

Species *Edaphomicrobium janssenii*^{Ts}

Etymology

[jans.sen'i.i.] **N.L. gen. n.** *janssenii*, of Janssen, named after Peter H. Janssen, for his pioneering isolation-based studies that first described this lineage (Ellin6529)

Nomenclatural type

[NCBI Assembly: GCA_013698095.1](#)^{Ts}

Description

A Chloroflexota bacterium represented a high-quality metagenome-assembled genome (MAG), recovered from desert soils from the Mackay Glacier region, Antarctica. The bacterium is predicted to be an atmospheric hydrogen oxidizer using H₂ (via a high-affinity group 1h [NiFe]-hydrogenase) from air as a key energy source for survival in oligotrophic desert soils. The species is proposed to serve as the nomenclatural type for the *Edaphomicrobium* genus, and honors Peter H. Janssen, for his pioneering isolation-based studies that first described the class lineage of this bacterium (Ellin6529, later named as Limnocylindria).

Classification

Bacteria » Chloroflexota » *Candidatus* Limnocylindria » *Candidatus* Limnocylindrales » *Edaphomicrobiaceae* » *Edaphomicrobium* » *Edaphomicrobium janssenii*^{Ts}

References

Effective publication: Ortiz et al., 2021 [1]

Assigned taxonomically: Ortiz et al., 2021 [1]

Registry URL

<https://seqco.de/i:52913>

References

1. Ortiz et al. (2021). Multiple energy sources and metabolic strategies sustain microbial diversity in Antarctic desert soils. *Proceedings of the National Academy of Sciences*.
[DOI:10.1073/pnas.2025322118](https://doi.org/10.1073/pnas.2025322118)