Izemobacterium crustae sp. nov.

Submitted by Viver, Tomeu

Table 1: Complete list of names proposed in the current register list.

Proposed Taxon	Etymology	Description	Parent Taxon	Туре	Registry URL
Genus Izemobacterium	[I.ze.mo.bac.te'ri.um] Gr. neut. n. izema, a settling down, sediment; N.L. neut. n. bacterium, rod; N.L. neut. n. Izemobacterium, a bacterium from settling or subsurface environments	The description of the genus is identical to that given for the type species. The MAG encodes a nearly complete glycolytic pathway and a complete lactate fermentation pathway, while gluconeogenesis and the tricarboxylic acid cycle are absent, consistent with a fermentative lifestyle and partial oxidative metabolism typical of anaerobic or microaerophilic organisms. An F ₁ F ₀ -type ATP synthase is present, suggesting energy generation linked to proton or sodium motive force. No carbon fixation pathways were detected, supporting a heterotrophic mode of nutrition. Genes for β-glucosidase and pullulanase indicate conserved oligosaccharide degradation, and biosynthetic pathways for several amino acids (serine, threonine, glutamine, cysteine, and glycine) are present. The MAG also encodes ferrous iron uptake systems, a complete DNA degradation locus (including extracellular nucleases, ABC transporters, and salvage enzymes), and a conserved sporulation gene set (spoIIIE, spoVG, kapD, spsF), consistent with endospore formation.	Izemoplasmataceae	Izemobacterium crustae ^{Ts}	seqco.de/i:54823
Species	[crus'tae] L. gen. n. <i>crustae</i> , from crust, referring to the	The MAG is 2.2 Mb with a GC content of 33.6%, completeness 97.78%, contamination 5.58%. Phylogenomic analysis places it within the family <i>Izemoplasmataceae</i> . The AAI value of the MAG and the close relative species <i>Izemoplasma acidinucleici</i> was 57.18%. The MAG encodes a nearly complete glycolytic pathway and a complete lactate fermentation pathway, while gluconeogenesis and the tricarboxylic acid cycle are absent, consistent with a fermentative lifestyle and partial oxidative metabolism typical of anaerobic or microaerophilic organisms. No		NCBI Assembly:	

Izemobacterium Proposed crustaels Taxon	subseafloor oceanic	carbon fixation pathways were detected,	Izemobacterium	GCA_052978905.1	seqco.de/i:54822
crustae	crust Etymology this	supporting a heter Desptription e of nutrition.	Parent Taxon	Ts Type	Registry URL
IdXVII	organism was	Genes for β-glucosidase and pullulanase indicate			
	recovered	conserved oligosaccharide degradation, and biosynthetic pathways for several amino acids (serine, threonine, glutamine, cysteine, and glycine) are present. The MAG also encodes ferrous iron uptake systems, a complete DNA degradation locus (including extracellular nucleases, ABC transporters, and salvage enzymes), and a conserved sporulation gene set (spollIE, spoVG, kapD, spsF), consistent with endospore formation.			