Register list for 17 new names including Skiveiella danica sp. nov.

Submitted by Fischer Petersen, Jette

Genus Aalborgicola

Etymology

[Aal.bor.gi'co.la] **N. L. neut. n.** *Aalborg*, the city of Aalborg; **L. suff.** *-cola*, inhabitant; **N.L. masc. n.** *Aalborgicola*, an inhabitant of Aalborg

Nomenclatural type

Species Aalborgicola defluviihabitans^{Ts}

Description

Genus of species found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Most species are predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, acetate kinase, *ackA*, and phosphate acetyltransferase, *pta*.

All species (except Aalborgicola danicus) have the potential to reduce nitrate with *narGHI* along with the reduction of nitrate to nitric oxide with *nirS*. Lastly it also had nitrous oxide reductase, *nosZ* predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgicola

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44106

Genus Aalborgiella

Etymology

[Aal.bor.gi.el'la] **N.L. fem. dim. n.** Aalborgiella, bacterium named after the city Aalborg where the MAG had been retrieved

Nomenclatural type

Species Aalborgiella aggregata^{Ts}

Description

Genus of rod shaped bacteria found in activated sludge. Type species is Aalborgiella aggregata. Type species(Aalborgiella aggregata) is a rod shaped bacterium (1.4 \pm 0.3 x 0.4 \pm 0.1 µm) abundant in activated sludge globally. Based on FISH analysis it seems to grow along filaments in activated sludge.

Based on genome-wide gene annotaion it has the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway. It furthermore showed potential for transportation of branched amino acids.

Presence of *narGHI* genes showed potential to reduce nitrate.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgiella

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Genus Defluviibacillus

Etymology

[De.flu.vi.i.ba.ci'llus] **L. neut. n.** *defluvium*, sewage; **L. masc. n.** *bacillus*, rod-shaped bacterium; **N.L. masc. n.** *Defluviibacillus*, indicating a rod-shaped bacterium from sewage

Nomenclatural type

Species *Defluviibacillus avedoerensis*^{Ts}

Description

A genus of rod shaped bacteria found in activated sludge. Type species is Defluviibacillus avedoerensis.

The type species is a rod shaped bacteria (2.1 \pm 0.4 x 0.6 \pm 0.1 μ m) abundant in activated sludge globally.

Based on genome-wide gene annotaion it has the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway. It furthermore showed potential for transportation of polar amino acids and branched amino acids.

Presence of *narGHI* genes showed potential to reduce nitrate along with potential for further conversion via *norB*. It also had the potential to reduce nitrite to nitric oxide via nitrite reductase. *nirS*.

Defluviibacillus avedoerensis had predicted all genes of the three pathways (polyP, glycogen and PHA) associated with Pao metabolism.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Defluviibacillus

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44099

Genus *Egaibacter*

Etymology

[E.ga.i.bac'ter] **N. L. masc. n.** *Egaa*, the city Egaa where the MAG had been retrieved; **N.L. masc. n.** *bacter*, bacterium; **N.L. masc. n.** *Egaibacter*, indicating a bacterium found in Egaa

Nomenclatural type

Species Egaibacter danicus^{Ts}

Description

Genus of bacteria found in activated sludge.

Species generally have the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

They can also utilize branched chain amino acids (livFGHKM).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, acs.

Potential to reduce nitrate with narGHI along with the reduction of nitrate to nitric oxide with nirS.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Egaibacter

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Genus Skiveiella

Etymology

[Ski.ve.i.el'la] **N.L. fem. dim. n.** *Skiveiella*, named after the city Skive where the MAG had been retrieved

Nomenclatural type

Species Skiveiella danica^{Ts}

Description

Genus found in actived sludge. Type species is Skiveiella danica

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Skiveiella

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44104

Species Aalborgicola bjergmarkensis

Etymology

[bjerg.mar.ken'sis] **N.L. masc. adj.** *bjergmarkensis*, of the city of Bjergmarken, from where the MAG was obtained

Nomenclatural type

NCBI Assembly: GCA 016708725.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

The *gtsABC*+ *malK* transporters of of glucose uptake was also predicted.

Potential to reduce nitrate with narGHI. Lastly it also had nitrous oxide reductase, nosZ predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgicola » Aalborgicola bjergmarkensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Aalborgicola danicus

Etymology

[da'ni.cus] L. masc. adj. danicus, Danish

Nomenclatural type

NCBI Assembly: GCA 016703945.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Can utilize branched chain amino acids (livFGHKM).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, acs, acetate kinase, ackA, and phosphate acetyltransferase, pta.

Potential to reduce nitrate with *napAB* along with the reduction of nitrate to nitric oxide with nirS. Lastly it also had nitrous oxide reductase, nosZ predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgicola » Aalborgicola danicus

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44114

Species Aalborgicola defluviihabitans^{Ts}

Etymology

[de.flu.vii.ha'bi.tans] L. neut. n. defluvium, sewage; L. pres. part. habitans, inhabiting; L. masc. part. adj. defluviihabitans, pertaining to the habitat where the MAG was sequenced from.

Nomenclatural type

NCBI Assembly: GCA 016705575.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, acetate kinase, *ackA*, and phosphate acetyltransferase, *pta*.

Potential to reduce nitrate with *narGHI* along with the reduction of nitrate to nitric oxide with *nirS*. Lastly it also had nitrous oxide reductase, *nosZ* predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgicola » Aalborgicola defluviihabitans Ts

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Aalborgicola lynettensis

Etymology

[ly.net.ten'sis] **N.L. masc. adj.** *lynettensis*, of the city of Lynetten, from where the MAG was obtained

Nomenclatural type

NCBI Assembly: GCA 016719405.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Can utilize branched chain amino acids (livFGHKM)

Potential to reduce nitrate with *narGHI*. Lastly it also had nitrous oxide reductase, *nosZ* predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgicola » Aalborgicola lynettensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44113

Species Aalborgiella aggregata^{Ts}

Etymology

[ag.gre.ga'ta] L. fem. part. adj. aggregata, joined together

Nomenclatural type

NCBI Assembly: GCA_016708645.1 Ts

Description

Rod shaped bacterium ($1.4\pm0.3 \times 0.4\pm0.1 \mu m$) abundant in activated sludge globally. Based on FISH analysis it seems to grow along filaments in activated sludge. Based on genome-wide gene annotaion it has the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway. It furthermore showed potential for transportation of branched amino acids. Presence of *narGHI* genes showed potential to reduce nitrate.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Aalborgiella » Aalborgiella aggregata^{Ts}

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Defluviibacillus avedoerensis^{Ts}

Etymology

[a.ve.doe.ren'sis] **N.L. masc. adj.** avedoerensis, of the city Avedoere from which the MAG is retrieved from

Nomenclatural type

NCBI Assembly: GCA 016703665.1 Ts

Description

Rod shaped bacteria $(2.1\pm0.4 \times 0.6\pm0.1 \, \mu m)$ abundant in activated sludge globally. Based on genome-wide gene annotaion it has the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway. It furthermore showed potential for transportation of polar amino acids and branched amino acids.

Presence of *narGHI* genes showed potential to reduce nitrate along with potential for further conversion via *norB*. It also had the potential to reduce nitrite to nitric oxide via nitrite reductase, *nirS*.

Defluviibacillus avedoerensis had predicted all genes of the three pathways (polyP, glycogen and PHA) associated with Pao metabolism.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Defluviibacillus » Defluviibacillus avedoerensis^{Ts}

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://segco.de/i:44098

Species Egaibacter danicus^{Ts}

Etymology

[da'ni.cus] L. masc. adj. danicus, Danish

Nomenclatural type

NCBI Assembly: GCA 016707075.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Glucose uptake of via the gtsABC+malK transporter was also predicted.

Can utilize branched chain amino acids (livFGHKM).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, acs.

Potential to reduce nitrate with *narGHI* along with the reduction of nitrate to nitric oxide with *nirS*.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Egaibacter » Egaibacter danicus^{Ts}

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Rhodoferax bjergmarkensis

Etymology

[bjerg.mar.ken'sis] **N.L. masc. adj.** *bjergmarkensis*, of the city of Bjergmarken, from where the MAG was obtained

Nomenclatural type

NCBI Assembly: GCA 016708345.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Can utilize branched chain amino acids (livFGHKM).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, and acetate kinase, *ackA*

Potential to reduce nitrate with narGHI along with the reduction of nitrate to nitric oxide with *nirS*. Lastly it also had nitrous oxide reductase, nosZ predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Comamonadaceae » Rhodoferax » Rhodoferax bjergmarkensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44117

Species Rhodoferax mariagerensis

Etymology

[ma.ri.a.ge.ren'sis] **N.L. masc. adj.** *mariagerensis*, of the city of Mariager where the MAG was obtained

Nomenclatural type

NCBI Assembly: GCA 016719055.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Can utilize branched chain amino acids (*livFGHKM*) and polar amino acids (ABC.PA.A, ABC.PA.P, ABC.PA.S).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, acetate kinase, *ackA*, and phosphate acetyltransferase, *pta*.

Potential to reduce nitrate with narGHI

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Comamonadaceae » Rhodoferax » Rhodoferax mariagerensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Rhodoferax odensensis

Etymology

[o.den.sen'sis] **N.L. masc. adj.** *odensensis*, pertaining to Odense, a city in Denmark where the original sample was collected

Nomenclatural type

NCBI Assembly: GCA 016718405.1 Ts

Description

acterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Can utilize branched chain amino acids (livFGHKM).

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, acetate kinase, *ackA*, and phosphate acetyltransferase, *pta*.

Potential to reduce nitrate to nitric oxide with *nirS*. Lastly it also had nitrous oxide reductase, *nosZ* predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Comamonadaceae » Rhodoferax » Rhodoferax odensensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44116

Species Rhodoferax randersensis

Etymology

[ran.der.sen'sis] **N.L. masc. adj.** randersensis, from the city Randers where the MAG had been retrieved

Nomenclatural type

NCBI Assembly: GCA 016718155.1 Ts

Description

Bacterium found in activated sludge.

Genome-wide gene annotation suggested the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway.

Predicted to convert acetate to acetyl-CoA via acetyl-CoA synthetase, *acs*, acetate kinase, *ackA*, and phosphate acetyltransferase, *pta*.

Potential to reduce nitrate with *narGHI* along with the reduction of nitrate to nitric oxide with *nirS*. Lastly it also had nitrous oxide reductase, *nosZ* predicted.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Comamonadaceae » Rhodoferax » Rhodoferax randersensis

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

Species Skiveiella danica^{Ts}

Etymology

[da.ni'ca] **L. fem. adj.** danica, Danish

Nomenclatural type

NCBI Assembly: GCA 016721925.1 Ts

Description

Bacteria found in activated sludge. Based on genome-wide gene annotaion it has the potential for full glycolysis, pentose phosphate pathway, citric acid cycle and glyoxylate pathway. It furthermore showed potential for transportation of polar amino acids. Presence of *narGHI* genes showed potential to reduce nitrate.

Classification

Bacteria » Pseudomonadota » Betaproteobacteria » Burkholderiales » Burkholderiaceae » Skiveiella » Skiveiella danica^{Ts}

References

Effective publication: Petersen et al., 2025 [1]

Registry URL

https://seqco.de/i:44103

References

 Petersen et al. (2025). Diversity and physiology of abundant Rhodoferax species in global wastewater treatment systems. Systematic and Applied Microbiology. DOI:10.1016/j.syapm.2024.126574

Register List Certificate of Validation

On behalf of the *Committee on the Systematics of Prokaryotes Described from Sequence Data* (SeqCode Committee), we hereby certify that the Register List **seqco.de/r:ftcpaei9** submitted by **Fischer Petersen, Jette** and including 17 new names has been successfully validated.

Date of Priority: 2025-08-28 09:33 UTC **DOI:** 10.57973/segcode.r:ftcpaei9

