Register list for 40 new names including Acidimicrobilacustridaceae fam. nov.

Submitted by Layoun, Paul

Table 1: Complete list of names proposed in the current register list.

Proposed Taxon	Etymology	Description	Parent Taxon	Туре	Registry URL
Family <i>Acidimicrobilacustridaceae</i>	[A.ci.di.mi.cro.bi.la.cus.tri.da'ce.ae] N.L. masc. n. Acidimicrobilacustris, referring to the type genus Acidimicrobilacustris; -aceae, ending to denote a family; N.L. fem. pl. n. Acidimicrobilacustridaceae, the Acidimicrobilacustris family	A family of Acidimicrobiales also known as "acIV-D Actinobacteria" or "uncultured Microtrichales" from 16S rRNA gene analyses and as f_UBA8139 in GTDB, that is commonly found in freshwater environments. Consisting of the genus Acidimicrobilacustris and two species, Acidimicrobilacustris thunensis (GCA_965194345.1) and Acidimicrobilacustris europaeus (GCA_965194515.1), both isolated from freshwater lakes. Type species is Acidimicrobilacustris thunensis TE-7 (GCA_965194345.1). The closest cultivated relative is Rhabdothermincola salaria (lamiaceae, GCF_021246445.1), with an average amino acid identity of 66.55% and an average nucleotide identity of 71.1%. As this related taxon is also included in family UBA8139 in GTDB and not in lamiaceae, we propose the new family Acidimicrobilacustridaceae. Current GTDB (R220) classification: d_Bacteria; p_Actinomycetota; c_Acidimicrobilales; f_UBA8139.	Acidimicrobiales	Acidimicrobilacustris	seqco.de/i:48714

Proposed Taxon	Etymology	abundans Description	Parent Taxon	Туре	Registry URL
Family Verrucolacustridaceae	[Ver.ru.co.la.cus.tri.da'ce.ae] N.L. masc. n. Verrucolacustris, referring to the type genus Verrucolacustris; -aceae, ending to denote a family; N.L. fem. pl. n. Verrucolacustridaceae, the Verrucolacustris family	(GCA_965194535.1). In contrast to other Methylacidiphilales including the only described genus Methylacidimicrobium (Methylacidimicrobium (Methylacidimicrobium (Methylacidimicrobium (Methylacidimicrobium were identified, therefore we suggest the establishment of a new family of nonmethanotrophic Methylacidiphilales. The closest cultivated relative is Methylacidimicrobium cyclopophantes 3B_2 (GCF_902143385.2), with an average amino acid identity of 49.5% and average nucleotide identity of 62.8%. Current GTDB classification (R220): d_Bacteria; p_Verrucomicrobiota; c_Verrucomicrobiae; o_Methylacidiphilales; f_UBA3015.	Methylacidiphilales	Verrucolacustris	seqco.de/i:48695
Genus <i>Acidimicrobilacustris</i>	[A.ci.di.mi.cro.bi.la.cus'tris] N.L. neut. n. <i>Acidimicrobium</i> , the genus Acidimicrobium, in reference to the order Acidimicrobiales; L. masc. adj. <i>lacustris</i> , of a lake, pond, pool; N.L. masc. n. <i>Acidimicrobilacustris</i> , a freshwater genus of Acidimicrobiales	Type genus of Acidimicrobilacustridaceae also known as "acIV-D Actinobacteria" or "uncultured Microtrichales" from 16S rRNA gene analyses and as g_F1-20-MAGs160 in GTDB, that is commonly found in freshwater environments. Consisting of two species, Acidimicrobilacustris thunensis (GCA_965194345.1) and Acidimicrobilacustris europaeus (GCA_965194515.1), both isolated from freshwater lakes. Type species is Acidimicrobilacustris thunensis TE-7 (GCA_965194345.1). The closest cultivated relative is Rhabdothermincola salaria (GCF_021246445.1) with an	Acidimicrobilacustridaceae	Acidimicrobilacustris europaeus ^{Ts}	seqco.de/i:48715

Proposed Taxon	Etymology	average and an average	Parent Taxon	Туре	Registry URL
		nucleotide identity of 71.1%. Current GTDB (R220) classification: d_Bacteria; p_Actinomycetota; c_Acidimicrobiia; o_Acidimicrobiales; f_UBA8139; g_F1-20- MAGs160.			
Genus <i>Allorhodoferax</i>	[A.llo.rho.do.fe'rax] Gr. masc. pron. allos, another, other, different; N.L. masc. n. rhodoferax, a bacterial genus name; N.L. masc. n. Allorhodoferax, another Rhodoferax.	The genus contains two species, Allorhodoferax aquaticus (GCA_965194715.1) and Allorhodoferax lacus (GCA_965194635.1), both isolated from freshwater lakes. Type species is Allorhodoferax aquaticus MsE-M22 (GCA_965194715.1). The genus is classified as d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; Rhodoferax_C in GTDB (R220) and contains bacteria with various names such as Curvibacter, Rhodoferax, etc. The closest cultivated relative is Curvibacter sp. AEP1-3 (GCF_002163715.1), with average amino acid identities of 86.2-90.7% and average nucleotide identities of 81-9-86.6%. The type strain of the genus Rhodoferax (Rhodoferax fermentans JCM 7819; GCA_002017865.1) is classified as d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; g_Rhodoferax; s_Rhodoferax fermentans, with AAIs of 66.0-66.8% and ANIs of 72.4-72.6%. We therefore suggest a	Comamonadaceae	Allorhodoferax aquaticus [™] s	seqco.de/i:49941

Proposed Taxon	Etymology	reclassification of this genus (GTDB genus Rhodoferax_C)	Parent Taxon	Туре	Registry URL
		with the proposed name Allorhodoferax.			
Genus <i>Allotabrizicola</i>	[A.llo.ta.bri.zi'co.la] Gr. masc. pron. <i>allos</i> , another, other, different; N.L. fem. n. <i>Tabrizicola</i> , a bacterial genus; N.L. fem. n. <i>Allotabrizicola</i> , another Tabrizicola genus	Type species is Allotabrizicola aquatica RE-M30 (GCA_965194375.1). The closest cultivated relative is Tabrizicola oligotrophica KMS-5 (GCF_011008935.1) with an average amino acid identity of 79.2% and average nucleotide identity of 79.5%. As the closest relative is classified as Tabrizicola_A in GTDB, we propose a new genus that encompasses both species. The type species of the genus Tabrizicola (Tabrizicola aquatica, GCF_002900975.1), has average amino acid identities of 68.4-69.2% and average nucleotide identities of 73.7-74.8% to Tabrizicola oligotrophica KMS-5 (GCF_011008935.1) and Allotabrizicola aquatica RE-M30. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Rhodobacteraceae; g_Tabrizicola_A.	Paracoccaceae	Allotabrizicola aquatica ^{Ts}	seqco.de/i:48698
	Flacus tri hasttari M. L. mass	A genus of abundant freshwater bacteria, commonly known from metagenomic and 16S rRNA amplicon studies, often referred to MWH-UniP1 group or betaVI in 16S rRNA based studies. Type species is Lacustribacter communis MsE-M52 (GCA_965194335.1). The closest cultivated relatives are the undescribed Burkholderiales bacterium LSUCC0115			

Proposed Taxon	adj. lacustr stymology g to a lake;	average and a series of a seri	Parent Taxon	Туре	Registry URL
Genus <i>Lacustribacter</i>	N.L. masc. n. bacter, rod; N.L. masc. n. Lacustribacter, A rod-shaped bacterium living in freshwaters.	61.9% and average nucleotide identity of 67.9% and the newly established genus Hahnella, with 60.4-61.7% AAI and 67.2-67.9% ANI. The closest validly described relative is Limnobacter thiooxidans CS-K2 (GCF_036323495.1) with an AAI of 53.95% and an ANI of 66.33%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; g_UBA954.	Burkholderiaceae	Lacustribacter communis ^{Ts}	seqco.de/i:48710
Genus Novimethylotenera	[No.vi.me.thy.lo.te.ne'ra] L. adj. masc. novus, new; N.L. fem. n. Methylotenera, the bacterial genus Methylotenera; N.L. fem. n. Novimethylotenera, a new Methylotenera	Type species is Novimethylotenera aquatica ME-M6 (GCA_947054645.1). Although the closest cultivated relative (Methylotenera versatilis 7; GCF_000799165.1) has an average amino acid identity of 80.36% and average nucleotide identity of 76.56%, the genus Methylotenera is known to be polyphyletic in phylogenomic trees (e.g., Salcher et al. 2019; https://doi.org/10.1038/s41396-019-0471-3) and some strains that were previously termed Methylotenera should be reclassified. Current GTDB classification of the genus including the closest cultivated relative (GCF_000799165.1) is d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Methylotenera_A. We propose a reclassification of the GTDB genus Methylotenera_A to Novimethylotenera_A cap. nov	Methylophilaceae	Novimethylotenera aquatica ^{Ts}	seqco.de/i:48702

Proposed Taxon	Etymology	Description Type species is	Parent Taxon	Туре	Registry URL
Genus Verrucolacustris	[Ver.ru.co.la.cus'tris] N.L. pref. Verruco-, derived from the bacterial phylum Verrucomicrobiota; L. masc. adj. lacustris, of a lake; N.L. masc. n. Verrucolacustris, a freshwater genus of Verrucomicrobiota	Verrucolacustris abundans MiH- 22 (GCA_965194535.1). The closest cultivated relative is Methylacidimicrobium cyclopophantes 3B_2 (GCF_902143385.2), with an average amino acid identity of 49.5% and average nucleotide identity of 62.8%. Current GTDB classification (R220): d_Bacteria; p_Verrucomicrobiota; c_Verrucomicrobiae; o_Methylacidiphilales; f_UBA3015; g_UBA3015.	Verrucolacustridaceae	Verrucolacustris abundans ^{Ts}	seqco.de/i:48696
Species Acidimicrobilacustris europaeus ^{TS}	[e.u.ro.pae'us] N.L. masc. adj. europaeus, of/from Europe; named after the main occurrence in european lakes	Type strain is Acidimicrobilacustris europaeus KE-4 (GCA_965194515.1), isolated from 5 m depth from Klíčava Reservoir, Czechia (date: 2019- 04-25), via high-throughput dilution to extinction cultivation. KE-4 has a genome size of 2.35 Mbp with a genomic GC content of 58.2%, contains 3 rRNA genes and 44 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins but lacks the biosynthetic pathway for retinal biosynthesis. No genes for flagella or pilus assembly and chemotaxis were annotated. Pathways for taurine degradation, assimilatory sulfate reduction and methane/alkanesulfonate oxidation and biosynthesis for all amino acids except histidine and threonine were predicted. Further, pathways for riboflavin, pyridoxal, NAD,	Acidimicrobilacustris	NCBI Assembly: GCA_965194515.1 Ts	seqco.de/i:48713

Proposed Taxon	Etymology	cultivated relatives are Rhabdothermincola salaria	Parent Taxon	Туре	Registry URL
		(GCF_021246445.1) with an average amino acid identity of 64.98% and an average nucleotide identity of 69.8% and another newly proposed species, <i>Acidimicrobilacustris thunensis</i> TE-7 (GCA_965194345.1), with an AAI of 73.1% and an ANI of 72%. Current GTDB classification (R220): d_Bacteria; p_Actinomycetota; c_Acidimicrobila; o_Acidimicrobilaes; f_UBA8139; g_F1-20-MAGs160; s_F1-20-MAGs160 sp903827085.			
		Type strain is Acidimicrobilacustris thunensis TE-7 (GCA_965194345.1), isolated from 5 m depth from Lake Thun, Switzerland (date: 2019-11-11), via high- throughput dilution to extinction cultivation. TE-7 has a genome size of 2.38 Mbp with a genomic GC content of 60.6%, contains 3 rRNA genes and 46 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes			
Species Acidimicrobilacustris thunensis	[thu.nen'sis] N.L. masc. adj. thunensis, of Thun, referring to Lake Thun, the isolation source of the type strain.	encoding rhodopsins but lacks the biosynthetic pathway for retinal biosynthesis. No genes for flagella or pilus assembly and chemotaxis were annotated. Pathways for taurine degradation, assimilatory sulfate reduction and methane/alkanesulfonate oxidation and biosynthesis for all amino acids except histidine were predicted. Further, pathways for riboflavin, pyridoxal, NAD, coenzyme A,	Acidimicrobilacustris	NCBI Assembly: GCA_965194345.1 [™] s	seqco.de/i:48740

Proposed Taxon	Etymology	biotin and neme were identified. Processor	Parent Taxon	Туре	Registry URL
		cultivated relatives are Rhabdothermincola salaria (GCF_021246445.1) with an average amino acid identity of 66.55% and an average nucleotide identity of 71.1% and another newly proposed species, Acidimicrobilacustris europaeus KE-4 (GCA_965194515.1), with an AAI of 73.1% and an ANI of 72%. Current GTDB (R220) classification: d_Bacteria; p_Actinomycetota; c_Acidimicrobiales; f_UBA8139; g_F1-20-MAGs160; s_F1-20-MAGs160 sp945878725.			
Species <i>Allorhodoferax</i> aquaticus ^{Ts}	[a.qua'ti.cus] L. masc. adj. aquaticus, living, growing, or found in or by the water, aquatic	Type strain is <i>Allorhodoferax</i> aquaticus MsE-M22 (GCA_965194715.1), isolated from 5 m depth from Lake Most, Czechia (date: 2019-07-30), via high-throughput dilution to extinction cultivation. MsE-M22 has a genome size of 3.7 Mbp with a genomic GC content of 59.3%, contains 6 rRNA genes and 47 tRNAs. The genome is complete, consisting of a circular chromosome. Genes for flagellar and pilus assembly were annotated. Pathways for nitrate reduction, cyanate and urea degradation, glycolate oxidation and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, THF, cobalamin, and heme biosynthesis were identified. The closest cultivated relative is <i>Curvibacter</i> sp. AEP1-3	Allorhodoferax	NCBI Assembly: GCA_965194715.1 [™] s	seqco.de/i:48704

Proposed Taxon	Etymology	average all average nucleotide	Parent Taxon	Туре	Registry URL
		identity of 86.6%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; g_Rhodoferax_C; s_Rhodoferax_C sp027488985.			
Species <i>Allorhodoferax</i> lacus	[la'cus] L. gen. n. lacus, of a lake, referring to the habitat from which the type strain was isolated.	Type strain is Allorhodoferax lacus ZE-M1 (GCA_965194635.1), isolated from 5 m depth from Lake Zurich, Switzerland (date: 2019-04-03), via high-throughput dilution to extinction cultivation. ZE-M1 has a genome size of 3.7 Mbp with a genomic GC content of 60.1%, contains 6 rRNA genes and 46 tRNAs. The genome is a high-quality draft consisting of 2 contigs. Genes for flagellar and pilus assembly were annotated. Pathways for cyanate and urea degradation, glycolate and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, THF, cobalamin, and heme biosynthesis were identified. The closest cultivated relative is Curvibacter sp. AEP1-3 (GCF_002163715.1), with an average amino acid identity of 86.2% and average nucleotide identity of 81.9%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o Burkholderiales;	Allorhodoferax	NCBI Assembly: GCA_965194635.1 Ts	seqco.de/i:48720

Proposed Taxon	Etymology	f_Burkhokderiaceaein g_Rhodoferax_C; s	Parent Taxon	Туре	Registry URL
		Type strain is Allotabrizicola aquatica RE-M30 (GCA_965194375.1), isolated from 0.5 m depth from the Římov Reservoir, Czechia (date: 2019-08-05), via high-throughput dilution to extinction cultivation. RE-M30 has a genome size of 3.6 Mbp with a genomic GC content of 61.9%, contains 6 rRNA genes and 49 tRNAs. The genome is a high-quality draft consisting of 20 contigs. The genome			
Species Allotabrizicola aquatica ^{Ts}	[a.qua.ti'ca] L. fem. adj. aquatica, living or found in the water.	contains genes encoding anoxygenic aerobic phototrophy (pufABLM). Genes for flagellar assembly were annotated in the genome. Pathways for urea and taurine degradation, glycolate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, pantothenate, coenzyme A, and heme biosynthesis were identified. The closest cultivated relative is Tabrizicola oligotrophica KMS-5 (GCF_011008935.1), with an average amino acid identity of 79.2% and average nucleotide identity of 79.5%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Rhodobacteraceae; g_Tabrizicola_A; s	Allotabrizicola	NCBI Assembly: GCA_965194375.1 Ts	seqco.de/i:48697
		Type strain is Aquidulcibacter miladensis MiH-15 (GCA_965234355.1), isolated from 15 m depth from Lake Milada, Czechia (date: 2019-07-23), via high-throughput			

Proposed Taxon	Etymology	cultivation to extinction cultivation	Parent Taxon	Туре	Registry URL
		genome size of 3.2 Mbp with a genomic GC content of 55.7%, contains 3 rRNA genes and 41 tRNAs. The genome is a high-quality draft consisting of 8 contigs. The genome contains genes encoding anoxygenic aerobic phototrophy (pufABLM). Genes for flagellar assembly and chemotaxis were annotated in the genome. Pathways for taurine			
Species Aquidulcibacter miladensis	[mi.la.den'sis] N.L. masc. adj. <i>miladensis</i> , pertaining to Lake Milada (Czechia), the isolation source of the type strain.	degradation, assimilatory sulfate reduction and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, NAD, coenzyme A, pimeloyl-ACP, THF, and heme biosynthesis were identified. The closest cultivated relatives are Aquidulcibacter paucihalophilus TH1-2 (GCF_002105465.1) with an average amino acid identity of 87.1% and average nucleotide identity of 80.5% and another newly proposed species, Aquidulcibacter rimovensis RH-10 (GCA_965234525.1), with an AAI of 93.2% and an ANI of 89.4%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Caulobacterales; f_TH1-2; g_Aquidulcibacter; s_Aquidulcibacter sp945891505.	Aquidulcibacter	NCBI Assembly: GCA_965234355.1 ^{Ts}	seqco.de/i:48727
		Type strain is <i>Aquidulcibacter</i> rimovensis RH-10 (GCA_965234525.1), isolated from 30 m depth from Římov Reservoir, Czechia (date: 2019-			

Proposed Taxon	Etymology	08-05), <i>via</i> high-throughput dilution to extinction	Parent Taxon	Туре	Registry URL
Species Aquidulcibacter rimovensis	[ri.mo.ven'sis] N.L. masc. adj. rimovensis, pertaining to the Římov Reservoir (Czechia), the isolation source of the type strain.	cultivation. RH-10 has a genome size of 3.3 Mbp with a genomic GC content of 55.4%, contains 3 rRNA genes and 42 tRNAs. The genome is a high-quality draft consisting of 2 contigs. The genome contains genes encoding anoxygenic aerobic phototrophy (pufABLM). Genes for flagellar assembly and chemotaxis were annotated in the genome. Pathways for taurine degradation, assimilatory sulfate reduction and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, NAD, coenzyme A, pimeloyl-ACP, THF, and heme biosynthesis were identified. The closest cultivated relatives are Aquidulcibacter paucihalophilus TH1-2 (GCF_002105465.1) with an average amino acid identity of 87.3% and average nucleotide identity of 80.2% and another newly proposed species, Aquidulcibacter miladensis MiH-15 (GCA_965234355.1), with an AAI of 93.2% and an ANI of 89.4%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Caulobacterales; f_TH1-2; q Aquidulcibacter;	Aquidulcibacter	NCBI Assembly: GCA_965234525.1 ™s	seqco.de/i:48737
		s_Aquidulcibacter sp027532555. Type strain is <i>Caulobacter</i> <i>lacus</i> MiH-16 (GCA_965234345.1), isolated from 15 m depth from Lake			

Proposed Taxon	Etymology	Milada, C zęckia (date: 2019- 07-23), <i>via</i> high-throughput	Parent Taxon	Туре	Registry URL
Species Caulobacter lacus	[la'cus] L. gen. n. lacus, of a lake, referring to the habitat from which the type strain was isolated.	dilution to extinction cultivation. MiH-16 has a genome size of 3.6 Mbp with a genomic GC content of 67.6%, contains 3 rRNA genes and 47 tRNAs. The genome is a high-quality draft consisting of 5 contigs. The genome contains genes encoding rhodopsins. Genes for flagellar assembly and chemotaxis were annotated in the genome. Pathways for taurine degradation, assimilatory sulfate reduction and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, pimeloyl-ACP, THF, and heme biosynthesis were identified. The closest cultivated relative is Caulobacter sp. Root1455 (GCF_001426905.1), with an average amino acid identity of 64% and average nucleotide identity of 74.7%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Caulobacterales; f_Caulobacter; s_Caulobacter sp903858185.	Caulobacter	NCBI Assembly: GCA_965234345.1 Ts	seqco.de/i:48721
		Type strain is Flavobacterium neuenschwanderi GE-10 (GCA_965234425.1), isolated from 5 m depth from Greifensee, Switzerland (date: 2019-04-03), via high-throughput dilution to extinction cultivation. GE-10 has a genome size of 3.56 Mbp with a genomic GC content of			

Proposed Taxon	Etymology	33.1%, contains 4 rRNA genes and 38 tRNASCTINE genome is a	Parent Taxon	Туре	Registry URL
Species Flavobacterium neuenschwanderi	[ne.u.en.schwan.der'i] L. masc. gen. n. neuenschwanderi, of Neuenschwander, named after the Swiss scientist Stefan Neuenschwander, who studied freshwater Flavobacteria in Lake Zurich.	high-quality draft consisting of 44 contigs. The genome contains genes encoding rhodopsins. Genes for gliding motility (gldBDHJKLMN, sprA) were annotated in the genome. Pathways for assimilatory sulfate reduction and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, NAD, coenzyme A, biotin, THF, menaquinone, and heme were identified. The closest cultivated relative is Flavobacterium psychrotolerans RB1R5 (GCF_003097635.1), with an average amino acid identity of 74.81% and average nucleotide identity of 74.37%. Current GTDB classification (R220): d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Flavobacteriales; f_Flavobacteriaceae; g_Flavobacterium; s	Flavobacterium	NCBI Assembly: GCA_965234425.1 Ts	seqco.de/i:48730
		Type strain is Flavobacterium rarum TH-M1 (GCA_965234445.1), isolated from 180 m from Lake Thun, Switzerland (date: 2019-04-08), via high-throughput dilution to extinction cultivation. TH-M1 has a genome size of 4.26 Mbp with a genomic GC content of 33.4%, contains 6 rRNA genes and 51 tRNAs. The genome is a high-quality draft consisting of 29 contigs. The genome contains genes encoding rhodopsins. Genes for gliding motility (gldBDHJKLMN, sprA) were annotated in the genome. Pathways for taurine			

	[ra runn] L. neut. auj. rarunn,	degradation, assimilatory			
Proposed Taxon Species <i>Flavobacterium</i>	sporadic or Efternally , referring	sulfate re description the	Parent Taxon	Type NCBI Assembly:	Registry URL
rarum	to the sporadic isolation and recovery from disparate sources of members of this species	biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, pantothenate, coenzyme A, biotin, THF, menaquinone, and heme were identified. The closest cultivated relative is Flavobacterium praedii IMCC34515 (GCF_026810365.1), with an average amino acid identity of 85.51% and average nucleotide identity of 83.7%. Current GTDB classification (R220): d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Flavobacteriales; f_Flavobacteriaceae; g_Flavobacterium; s	Flavobacterium	GCA_965234445.1 Ts	seqco.de/i:48736
		Type strain is Fontibacterium abundans MiE-29 (GCA_965235095.1), isolated from 5 m depth from Lake Milada, Czechia (date: 2019-10-15), via high-throughput dilution to extinction cultivation. MiE-29 has a genome size of 1.1 Mbp with a genomic GC content of 29.4%, contains 3 rRNA genes and 31 tRNAs. The genome is a high-quality draft consisting of 2 contigs. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagella or pilus assembly and chemotaxis were annotated. Pathways for glycolate oxidation and the biosynthesis of 16 amino acids were predicted. Further,			
Species Fontibacterium abundans	[a.bun'dans] L. neut. part. adj. abundans, abundant, referring to high global abundances	pathways for riboflavin, NAD, coenzyme A, and heme	Fontibacterium	NCBI Assembly: GCA_965235095.1 Ts	seqco.de/i:48693

Proposed Taxon	Etymology	The close Stess dripties relatives	Parent Taxon	Туре	Registry URL
		are Fontibacterium commune, syn. 'Candidatus Fonsibacter ubiquis' LSUCC0530 (GCF_002688585.1; later reclassified to 'Ca. Allofontibacter communis'), with an average amino acid identity of 86.5% and average nucleotide identity of 85.2% and another newly proposed species, Fontibacterium medardicum ME-17 (GCA_965235075.1), with an AAI of 92.7% and an ANI of 91.1%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Pelagibacterales; f_Pelagibacteraceae; g_Fonsibacter; s			
		Type strain is Allofontibacter medardicus ME-17 (GCA_965235075.1), isolated from 5 m depth from Lake Medard, Czechia (date: 2019-10-22), via high-throughput dilution to extinction cultivation. ME-17 has a genome size of 1.1 Mbp with a genomic GC content of 29.6%, contains 3 rRNA genes and 31 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagella or pilus assembly and chemotaxis were			
Species <i>Fontibacterium</i> medardense	[me.dar.den'se] L. neut. adj. medardense, pertaining to Lake Medard (Czechia), the isolation	glycolate oxidation and the biosynthesis of 16 amino acids were predicted. Further, pathways for riboflavin, NAD, coenzyme A, and heme	Fontibacterium	NCBI Assembly: GCA_965235075.1 ^T	seqco.de/i:48726

Proposed Taxon	Etymology	biosynthesis were identified. The closest cultivated relatives	Parent Taxon	Туре	Registry URL
		are 'Candidatus Fonsibacter ubiquis' LSUCC0530 (GCF_002688585.1; later reclassified to 'Ca. Allofontibacter communis'), with an average amino acid identity of 87.2% and average nucleotide identity of 85.2% and another newly proposed species, Allofontibacter abundans MiE-29 (GCA_965235095.1), with an AAI of 92.7% and an ANI of 91.1%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Pelagibacterales; f_Pelagibacteraceae; g_Fonsibacter			
		sp018882565. Type strain is <i>Hydrogenophaga miladensis</i> MiE-M28 (GCA_965234585.1), isolated from 5 m depth from Lake Milada, Czechia (date: 2019-10-15), <i>via</i> high-throughput dilution to extinction cultivation. MiE-M28 has a genome size of 2.4 Mbp with a genomic GC content of 60.6%, contains 6 rRNA genes and 43 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding anoxygenic aerobic phototrophy (<i>pufABLM</i>) and the			
Species <i>Hydrogenophaga</i> <i>miladensis</i>	[mi.la.den'sis] N.L. fem. adj. <i>miladensis</i> , pertaining to Lake Milada (Czechia), the isolation source of the type strain.	complete Calvin cycle for carbon fixation via RuBisCO. Genes for flagellar and pilus assembly were annotated. Pathways for thiosulfate oxidation (Sox pathway), glycolate and methane/alkanesulfonate	Hydrogenophaga	NCBI Assembly: GCA_965234585.1 Ts	seqco.de/i:48728

Proposed Taxon	Etymology	oxidation and the biosynthesis of all amin eactin wer e	Parent Taxon	Туре	Registry URL
		predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, pimeloyl-ACP, and heme biosynthesis were identified. The closest cultivated relative is Hydrogenophaga intermedia MER 62 (GCF_001571205.1), with an average nucleotide identity of 74.2%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae_B; g_Hydrogenophaga; s_Hydrogenophaga intermedia_C.			
		Type strain is Lacustribacter communis MsE-M52 (GCA_965194335.1), isolated from 5 m depth from Lake Most, Czechia (date: 2019-10-01), via high-throughput dilution to extinction cultivation. MsE-M52 has a genome size of 2.1 Mbp with a genomic GC content of 53.3%, contains 3 rRNA genes and 42 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding anoxygenic aerobic			
Species <i>Lacustribacter</i> communis ^{TS}	[com.mu'nis] L. masc. adj. communis, common; referring to a wide distribution in freshwater lakes.	phototrophy (<i>pufABLM</i>). Genes for flagellar assembly were annotated. Pathways for urea and taurine degradation, thiosulfate oxidation (Sox pathway), glycolate oxidation, and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, NAD, pantothenate, coenzyme A, THF, and heme	Lacustribacter	NCBI Assembly: GCA_965194335.1 ^{Ts}	seqco.de/i:48709

Proposed Taxon	Etymology	The close Desdriptien relatives	Parent Taxon	Туре	Registry URL
		are the undescribed Burkholderiales bacterium LSUCC0115 (GCA_009646425.1), with an average amino acid identity of 61.9% and average nucleotide identity of 67.9% and the newly established genus Hahnella, with 60.4-61.7% AAI and 67.2-67.9% ANI. The closest validly described relative is Limnobacter thiooxidans CS-K2 (GCF_036323495.1) with an AAI of 53.95% and an ANI of 66.33%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; g_UBA954; s_UBA954 sp002293155.			
Species <i>Leadbetterella lacustris</i>	[la.cus'tris] N.L. fem. adj. lacustris, of a lake; referring to the habitat from where the strain was isolated.	Type strain is <i>Leadbetterella lacustris</i> RE-19 (GCA_965234335.1), isolated from 0.5 m depth from the Římov reservoir, Czechia (date: 2019-08-05), <i>via</i> highthroughput dilution to extinction cultivation. RE-19 has a genome size of 5 Mbp with a genomic GC content of 37.48 %, contains 9 rRNA genes and 36 tRNAs. The genome is a high-quality draft consisting of 36 contigs. The genome contains genes encoding rhodopsins. Genes for gliding motility (<i>gldBDHJKLMN</i> , <i>sprA</i>) were annotated in the genome. Pathways for assimilatory sulfate reduction, methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, NAD, coenzyme	Leadbetterella	NCBI Assembly: GCA_965234335.1 [™] s	seqco.de/i:48724

Proposed Taxon	Etymology	A, THF, menaguipenen and heme biosynthesis were	Parent Taxon	Туре	Registry URL
		identified. The closest cultivated relative is Lacihabitans soyangensis KCTC23259 (GCF_024343775.1), with an average amino acid identity of 85.5% and average nucleotide identity of 82.97%. Lacihabitans is grouped with the genus Leadbetterella in GTDB. Current GTDB classification (R220): d_Bacteria; p_Bacteroidota; c_Bacteroidia; o_Cytophagales; f_Spirosomaceae; g_Leadbetterella fluviale_A.			
Species <i>Limnohabitans</i> kasalickyi	[ka.sa.li.cky'i] N.L. masc. gen. n. kasalickyi, named after the Czech scientist Vojtěch (Vojta) Kasalický, who isolated many strains of the genus Limnohabitans and was involved in the description of the genus.	Type strain is <i>Limnohabitans kasalickyi</i> MaE-M4 (GCA_965234325.1), isolated from 5 m depth from Lake Maggiore, Italy (date: 2019-04-09), <i>via</i> high-throughput dilution to extinction cultivation. MaE-M4 has a genome size of 3.7 Mbp with a genomic GC content of 56.3%, contains 6 rRNA genes and 44 tRNAs. The genome is a high-quality draft consisting of 16 contigs. The genome contains genes encoding anoxygenic aerobic phototrophy (<i>pufABLM</i>). Genes for flagellar and pilus assembly were annotated. Pathways for cyanate, urea, and taurine degradation, thiosulfate oxidation (Sox pathway), methane/alkanesulfonate and glycolate oxidation, and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, pantothenate, coenzyme A,	Limnohabitans	NCBI Assembly: GCA_965234325.1 Ts	seqco.de/i:48719

Proposed Taxon	Etymology	pimeloyl-ACP, THF, and heme biosynthesis Weile identified.	Parent Taxon	Туре	Registry URL
		The closest cultivated relative is Limnohabitans sp. Jir61 (GCF_003063545.1), with an average amino acid identity of 77.9% and average nucleotide identity of 80.1%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae_B; g_Limnohabitans; s_Limnohabitans sp002778325.			
Species <i>Limnohabitans</i> rimovensis	[ri.mo.ven'sis] N.L. masc. adj. rimovensis, pertaining to the Římov Reservoir, Czech Republic, the isolation source of the species.	Type strain is <i>Limnohabitans</i> rimovensis RE-1 (GCA_965234775.1), isolated from 0.5 m depth from the Římov Reservoir, Czechia (date: 2019-04-23), via highthroughput dilution to extinction cultivation. RE-1 has a genome size of 3.5 Mbp with a genomic GC content of 58.7%, contains 3 rRNA genes and 43 tRNAs. The genome is a high-quality draft consisting of 12 contigs. The genome contains genes encoding anoxygenic aerobic phototrophy (pufABLM). Genes for flagellar and pilus assembly were annotated. Pathways for urea degradation, thiosulfate oxidation (Sox pathway), methane/alkanesulfonate and glycolate oxidation, benzoate, salicylate, and phthalate degradation, and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, pantothenate, coenzyme A, THF, and heme biosynthesis were identified. The closest	Limnohabitans	NCBI Assembly: GCA_965234775.1 ™s	seqco.de/i:48738

Proposed Taxon	Etymology	Limnohab Description 31	Parent Taxon	Туре	Registry URL
		(GCF_002778315.1), with an average amino acid identity of 65.1% and average nucleotide identity of 72.4%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae_B; g_Limnohabitans; s			
Species <i>Methylotenera</i> hypolimnetica	[hy.po.lim.ne.ti'ca] Gr. prep. hypo, below, under; N.L. fem. adj. limnetica, of a lake; N.L. fem. adj. hypolimnetica, from the hypolimnion of lakes.	Type strain is Methylotenera hypolimnetica RH-M31 (GCA_947054635.1), isolated from 30 m depth from the Římov Reservoir, Czechia (date: 15.08.2019), via highthroughput dilution to extinction cultivation. RH-M31 has a genome size of 1.8 Mbp with a genomic GC content of 49.2%, contains 6 rRNA genes and 38 tRNAs. The genome is complete, consisting of a circular chromosome. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for methanol oxidation (Xox), the RuMP and methylcitric acid (MCA) cycle for methylotrophy and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, pimeloyl-ACP, biotin, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relatives are Methylotenera versatilis 301 (GCF_000093025.1) with an average amino acid identity of 75.7% and average nucleotide identity of 72.6% and another newly proposed species, Methylotenera profunda RH-M32	Methylotenera	NCBI Assembly: GCA_965601845.1 ^{Ts}	seqco.de/i:48718

Proposed Taxon	Etymology	GCA_947 654625161 with an AAI of 94.2% and an ANI of	Parent Taxon	Туре	Registry URL
		92%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Methylophilaceae; g_Methylotenera; s_Methylotenera sp903951385.			
Species <i>Methylotenera</i> profunda	[pro.fun'da] L. fem. adj. profunda, deep; referring to the deep zone of lakes where the species is common.	Type strain is Methylotenera profunda RH-M32 (GCA_947054625.1), isolated from 30 m depth from the Římov Reservoir, Czechia (date: 15.08.2019), via highthroughput dilution to extinction cultivation. RH-M32 has a genome size of 1.7 Mbp with a genomic GC content of 47.9%, contains 6 rRNA genes and 38 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for methanol oxidation (Xox), the RuMP and methylcitric acid (MCA) cycle for methylotrophy and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, pimeloyl-ACP, biotin, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relatives are Methylotenera versatilis 301 (GCF_000093025.1) with an average amino acid identity of 75.9% and average nucleotide identity of 72.8%	Methylotenera	NCBI Assembly: GCA_965601725.1 Ts	seqco.de/i:48733

Proposed Taxon	Etymology	and another newly proposed species, <i>Methylotehera</i>	Parent Taxon	Туре	Registry URL
		hypolimnetica RH-M31 (GCA_947054635.1), with an AAI of 94.2% and an ANI of 92%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Methylophilaceae; g_Methylotenera; s_Methylotenera oryzisoli_A.			
		Type strain is <i>Mycobacterium</i> aquicola MiE-22 (GCA_965234515.1), isolated			
Species <i>Mycobacterium</i> aquicola	[a.qui'co.la] L. fem. n. aqua, water; L. masc. suff. -cola, inhabitant; N.L. masc. n. aquicola, inhabitant of water, referring to the the isolation source from a freshwater lake.	from 5 m depth from Lake Milada, Czechia (date: 2019-10-15), via high-throughput dilution to extinction cultivation. MiE-22 has a genome size of 3.4 Mbp with a genomic GC content of 66.3%, contains 3 rRNA genes and 57 tRNAs. The genome is a high-quality draft consisting of 3 contigs. The genome contains genes encoding rhodopsins. No genes for flagella or pilus assembly and chemotaxis were annotated. Pathways for taurine degradation, assimilatory sulfate reduction and the biosynthesis of all amino acids except for histidine and aspartate were predicted. Further, pathways for many vitamins and cofactors (riboflavin, pyridoxal, NAD, coenzyme A, biotin, tetrahydrofolate, heme, cobalamine and menaquinone) were identified. The closest cultivated relative is Mycobacterium massilipolynesiensis M26 (GCF_001494595.1), with an average amino acid identity of	Mycobacterium	NCBI Assembly: GCA_965234515.1 Ts	seqco.de/i:48708

Proposed Taxon	Etymology	nucleotid @escritp;ion 76.47%.	Parent Taxon	Туре	Registry URL
		Current GTDB classification (R220): d_Bacteria; p_Actinomycetota; c_Actinomycetia; o_Mycobacteriales; f_Mycobacteriaceae; g_Mycobacterium; s_Mycobacterium sp945897705.			
Species Novimethylotenera aquatica ^{Ts}	[a.qua.ti'ca] L. fem. adj. aquatica, living or found in the water.	Type strain is Novamethylotenera aquatica ME-M6 (GCA_947054645.1), isolated from 5 m depth from Lake Medard, Czechia (date: 09.07.2019), via high- throughput dilution to extinction cultivation. ME-M6 has a genome size of 2.1 Mbp with a genomic GC content of 41.7%, contains 6 rRNA genes and 37 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagellar assembly and chemotaxis were annotated. Pathways for methanol oxidation (Xox), the RuMP and methylcitric acid (MCA) cycle for methylotrophy and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, pimeloyl-ACP, biotin, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relative is Methylotenera versatilis 7 (GCF_000799165.1) with an average amino acid identity of 80.36% and average nucleotide identity of 76.56%. Current GTDB classification (R220): d Bacteria:	Novimethylotenera	NCBI Assembly: GCA_965601485.1 Ts	seqco.de/i:48701

Proposed Taxon	Etymology	p_Pseud onesearistion	Parent Taxon	Туре	Registry URL
		o_Burkholderiales; f_Methylophilaceae; g_Methylotenera_A; s_Methylotenera_A oryzisoli_A.			
Species Planktophila warneckei	[war.ne.cke'i] N.L. masc. gen. n. warneckei, of Warnecke, named after the deceased German scientist Falk Warnecke, who intensively worked on the ecology of freshwater Planktophila	Type strain is Planktophila warneckii RE-8 (GCA_965234675.1), isolated from 0.5 m depth from the Římov reservoir, Czechia (date: 2019-04-23), via high-throughput dilution to extinction cultivation. RE-8 has a genome size of 1.4 Mbp with a genomic GC content of 46.2%, contains 3 rRNA genes and 38 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins. No genes for flagella or pilus assembly and chemotaxis were annotated. Pathways for the biosynthesis of all amino acids except for histidine were predicted. Further, pathways for riboflavin, pyridoxal, coenzyme A, and menaquinone biosynthesis were identified. The closest cultivated relative is Actinobacteria bacterium IMCC26103 (GCA_002284875.1), with an average amino acid identity of 72.2% and average nucleotide identity of 70.96%. Current GTDB classification (R220): d_Bacteria; p_Actinomycetota; c_Actinomycetota; c_Actinomycetota; c_Actinomycetia; o_Nanopelagicaceae; g_Planktophila; s	Planktophila	NCBI Assembly: GCA_965234675.1 Ts	seqco.de/i:48741
		Type strain is <i>Polynucleobacter</i> hahnii ZE-4			

Proposed Taxon	Etymology	(GCA_965234415.1), isolated from 5 m Gesti Wolfin Lake	Parent Taxon	Туре	Registry URL
Species Polynucleobacter hahnii	[hah.ni'i] L. masc. gen. n. hahnii, of Hahn, named after the scientist Martin W. Hahn, who isolated and described many species of the genus Polynucleobacter.	Zurich, Switzerland (date: 2019-04-03), via high-throughput dilution to extinction cultivation. ZE-4 has a genome size of 2.3 Mbp with a genomic GC content of 43.7%, contains 3 rRNA genes and 38 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding anoxygenic aerobic phototrophy (pufABLM). No genes for flagellar assembly and chemotaxis were annotated. Pathways for nitrate reduction, thiosulfate oxidation (Sox pathway), glycolate oxidation and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, NAD, pantothenate, coenzyme A, biotin, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relative is Polynucleobacter sp. IMCC 30228 (GCF_021395205.1), with an average amino acid identity of 86.6% and average nucleotide identity of 82.8%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiaceae; g_Polynucleobacter;	Polynucleobacter	NCBI Assembly: GCA_965234415.1 Ts	seqco.de/i:48716
		s_Polynucleobacter sp903944725.			
		Type strain is <i>Polynucleobacter</i> hoetzingeranus RE-M21 (GCA_965234555.1), isolated from 0.5 m depth from the Římov Reservoir, Czechia (date: 2019-08-05), <i>via</i> highthroughput dilution to			

Proposed Taxon	Etymology	extinction Destivation RE-M21 has a genome size of 1.8 Mbp	Parent Taxon	Туре	Registry URL
Species Polynucleobacter hoetzingerianus	[hoet.zin.ge.ri.a'nus] N.L. masc. adj. hoetzingerianus, named after the Austrian scientist Mattias Hoetzinger, who characterized several species of the genus Polynucleobacter	with a genome size of 1.8 Mbp with a genomic GC content of 46.6%, contains 3 rRNA genes and 40 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding anoxygenic aerobic phototrophy (pufABLM). No genes for flagellar assembly and chemotaxis were annotated. Pathways for cyanate degradation, thiosulfate oxidation (Sox pathway), glycolate oxidation and the biosynthesis of all amino acids except for aspartate were predicted. Further, pathways for thiamine, riboflavin, NAD, pantothenate, coenzyme A, biotin, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relative is Polynucleobacter sp. MWH-UH24A (GCF_018687475.1), with an average amino acid identity of 82.7% and average nucleotide identity of 74.9%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiales; f_Burkholderiaceae; g_Polynucleobacter; s_Polynucleobacter; s_Polynucleobacte	Polynucleobacter	NCBI Assembly: GCA_965234555.1 Ts	seqco.de/i:48717
		Type strain is Rhabdoaerophilum aquaticum MsE-M23 (GCA_965234495.1), isolated from 5 m depth from Lake Most, Czechia (date: 2019-07-30), via high-throughput dilution to extinction cultivation. MsE-M23 has a genome size of 34 Mbp with a genomic GC content of			

Proposed Taxon	Etymology	58.6%, coptains the generalis	Parent Taxon	Туре	Registry URL
Species Rhabdaerophilum aquaticum	[a.qua.ti'cum] L. neut. adj. aquaticum, living or found in the water	and 46 tRNAs. The genome is complete, consisting of a circular chromosome and one circular plasmid. Genes for flagellar assembly and chemotaxis were annotated in the genome. Pathways for cyanate and urea degradation, thiosulfate oxidation (Sox pathway), glycolate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, coenzyme A, THF, and heme biosynthesis were identified. The closest cultivated relative is Rhabdaerophilum calidifontis SYSU G02060 (GCF_008641065.1), with an average amino acid identity of 66.3% and average nucleotide identity of 70.3%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Rhizobiales; f_Beijerinckiaceae; g_Rhabdaerophilum; s	Rhabdaerophilum	NCBI Assembly: GCA_965234495.1 Ts	seqco.de/i:48703
		Type strain is <i>Rhodoluna</i> miladensis MiE-23b (GCA_965234705.1), isolated from 5 m depth from Lake Milada, Czechia (date: 2019-10-15), via high-throughput dilution to extinction cultivation. MiE-23b has a genome size of 1.28 Mbp with a genomic GC content of 50.2%, contains 3 rRNA genes and 40 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins but lacks the biosynthetic pathway for			

Proposed Taxon	Etymology [mi.la.den'sis] N.L. fem. adj.	retinal biosynthesis No genes for flagella or pilus assembly	Parent Taxon	Туре	Registry URL
Species Rhodoluna miladensis	miladensis, pertaining to Lake Milada (Czechia), the isolation source of the type strain.	and chemotaxis were annotated. Pathways for the biosynthesis of all amino acids except for methionine and histidine were predicted. Further, pathways for riboflavin, pyridoxal, coenzyme A, and menaquinone were identified. The closest cultivated relative is <i>Rhodoluna lacicola</i> MWH-Ta8 (GCF_000699505), with an average amino acid identity of 65.06% and average nucleotide identity of 67.72%. Current GTDB classification (R220): d_Bacteria; p_Actinomycetota; c_Actinomycetota; c_Actinomycetales; f_Microbacteriaceae; g_Rhodoluna; s	Rhodoluna	NCBI Assembly: GCA_965234705.1 Ts	seqco.de/i:48729
Species <i>Sphingorhabdus</i> communis	[com.mu'nis] L. fem. adj. communis, common, referring to a widespread distribution in freshwater lakes.	Type strain is <i>Sphingorhabdus</i> commune GE-11 (GCA_965234695.1), isolated from 5 m depth from Lake Greifensee, Switzerland (date: 2019-04-03), via high-throughput dilution to extinction cultivation. GE-11 has a genome size of 2.4 Mbp with a genomic GC content of 54.9%, contains 3 rRNA genes and 42 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for assimilatory sulfate reduction and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were	Sphingorhabdus	NCBI Assembly: GCA_965234695.1 Ts	seqco.de/i:48711

Proposed Taxon	Etymology	predicted. Further, pathways for ribofla vin, NAP, co enzyme	Parent Taxon	Туре	Registry URL
		A, THF, and heme biosynthesis were identified. The closest cultivated relative is Sphingorhabdus wooponensis 03SU3-P (GCF_003933235.1), with an average amino acid identity of 87.4% and average nucleotide identity of 80.5%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Sphingomonadales; f_Sphingomonadaceae; g_Sphingorhabdus_B; s_Sphingorhabdus_B sp903821685.			
	[raˈra] L. fem. adj. <i>rara</i> , sporadic	Type strain is Sphingorhabdus rara RE-M21a (GCA_965234565.1), isolated from 0.5 m depth from the Římov Reservoir, Czechia (date: 2019-08-05), via highthroughput dilution to extinction cultivation. RE-M21a has a genome size of 3.2 Mbp with a genomic GC content of 57.5%, contains 3 rRNA genes and 45 tRNAs. The genome is a high-quality draft consisting of 4 contigs. The genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for taurine degradation,			
Species <i>Sphingorhabdus</i> rara	or uncommon, referring to the sporadic isolation and recovery from disparate sources of members of this species	assimilatory sulfate reduction and methane/alkanesulfonate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, pantothenate, NAD, coenzyme A, THF, and heme biosynthesis	Sphingorhabdus	NCBI Assembly: GCA_965234565.1 ^{Ts}	seqco.de/i:48734

Proposed Taxon	Etymology	cultivated Description	Parent Taxon	Туре	Registry URL
		Sphingorhabdus pulchriflava GY_G (GCF_003367235.1), with an average amino acid identity of 76.8% and average nucleotide identity of 75.4%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Alphaproteobacteria; o_Sphingomonadales; f_Sphingomonadaceae; g_Sphingorhabdus_B; s_Sphingorhabdus_B sp021298455.			
Species <i>Tabrizicola rara</i>	[ra'ra] L. fem. adj. rara, sporadic or uncommon, referring to the sporadic isolation and recovery from disparate sources of members of this species	Type strain is <i>Tabrizicola rara</i> LH-M10 (GCA_965234505.1), isolated from 50 m depth from Lake Lugano, Switzerland (date: 2019-11-05), <i>via</i> highthroughput dilution to extinction cultivation. LH-M10 has a genome size of 4.2 Mbp with a genomic GC content of 62.8%, contains 4 rRNA genes and 48 tRNAs. The genome is a high-quality draft consisting of 22 contigs. The genome contains the complete Calvin cycle for carbon fixation via RuBisCO. Genes for flagellar assembly were annotated in the genome. Pathways for urea and taurine degradation, glycolate oxidation and the biosynthesis of all amino acids were predicted. Further, pathways for riboflavin, coenzyme A, cobalamin, and heme biosynthesis were identified. The closest cultivated relative is <i>Rhodobacter thermarum</i> YIM 73036 (GCF_003574395.1; Basonym: <i>Tabrizicola thermarum</i> Khan et al. 2019), with an average amino acid identity of 75.7% and average nucleotide identity of 77.1%.	Tabrizicola	NCBI Assembly: GCA_965234505.1 Ts	seqco.de/i:48735

Proposed Taxon	Etymology	Current GTDBGGlassification (R220): d Bacteria;	Parent Taxon	Туре	Registry URL
		p_Pseudomonadota; c_Alphaproteobacteria; o_Rhodobacterales; f_Rhodobacteraceae; g_Tabrizicola; s_Tabrizicola sp903917595.			
Species <i>Verrucolacustris</i> abundans ^{Ts}	[a.bun'dans] L. masc. part. adj. abundans, abundant; referring to high global abundances	Type strain is <i>Verrucolacustris</i> abundans MiH-22 (GCA_965194535.1), isolated from 15 m depth from Lake Milada, Czechia (date: 2019-10-15), via high-throughput dilution to extinction cultivation. MiH-22 has a genome size of 2.0 Mbp with a genomic GC content of 52.8%, contains 3 rRNA genes and 46 tRNAs. The genome is complete, consisting of a circular chromosome. The genome contains genes encoding rhodopsins. No genes for flagellar assembly and chemotaxis were annotated. In contrast to other <i>Methylacidiphilales</i> members, no genes for C1 metabolism (methanotrophy) were identified. Pathways for assimilatory sulfate reduction and the biosynthesis of all amino acids except for methionine, histidine and tryptophan were predicted. Further, pathways for only three vitamins (thiamine, riboflavin, and biotin biosynthesis) were identified. The closest cultivated relative is <i>Methylacidimicrobium</i> cyclopophantes 3B_2 (GCF_902143385.2), with an average amino acid identity of 49.5% and average nucleotide	Verrucolacustris	NCBI Assembly: GCA_965194535.1 Ts	seqco.de/i:48694

Proposed Taxon	Etymology	d_Bacteria; p_ Description p_Verrucomicrobiota;	Parent Taxon	Туре	Registry URL
		c_Verrucomicrobiae; o_Methylacidiphilales; f_UBA3015; g_UBA3015; s_UBA3015 sp030054195.			
Species Zwartia lucis	[lu'cis] L. fem. adj. <i>lucis</i> , of light, referring to the presence of light driven proton pumps (rhodopsins) in the type strain.	Type strain is Zwartia lucis GE-14 (GCA_965234455.1), isolated from 5 m depth from Greifensee, Switzerland (date: 2019-04-03), via high-throughput dilution to extinction cultivation. GE-14 has a genome size of 3.7 Mbp with a genomic GC content of 50.9%, contains 6 rRNA genes and 41 tRNAs. The genome is a high-quality draft consisting of 7 contigs. In contrast to other Zwartia sp., the genome contains genes encoding rhodopsins and the biosynthetic pathway for retinal biosynthesis. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for nitrate reduction, cyanate, urea and taurine degradation, thiosulfate oxidation (Sox pathway), glycolate and methane/alkanesulfonate oxidation, and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, pantothenate, coenzyme A, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relative is Zwartia panacis strain KCTC42751 (GCF_030410395.1), with an average amino acid identity of 82.1% and average nucleotide identity of 77.6%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota;		NCBI Assembly: GCA_965234455.1 Ts	seqco.de/i:48725

Proposed Taxon	Etymology	o_Burkh @es¢#iptjon	Parent Taxon	Туре	Registry URL
		f_Burkholderiaceae; g_Zwartia; s			
Species Zwartia planktonica	[plan.kto.ni'ca] N.L. fem. adj. planktonica, living in the plankton of lakes, planktonic; from Gr. masc. adj. planktos, wandering.	Type strain is Zwartia planktonica RE-10 (GCA_965234315.1), isolated from 0.5 m depth from the Římov Reservoir, Czechia (date: 2019-04-23), via highthroughput dilution to extinction cultivation. RE-10 has a genome size of 4.5 Mbp with a genomic GC content of 52%, contains 6 rRNA genes and 44 tRNAs. The genome is complete, consisting of a circular chromosome. No genes for flagellar or pilus assembly and chemotaxis were annotated. Pathways for cyanate, urea and taurine degradation, thiosulfate oxidation (Sox pathway), glycolate oxidation, and the biosynthesis of all amino acids were predicted. Further, pathways for thiamine, riboflavin, NAD, pantothenate, coenzyme A, THF, ubiquinone, and heme biosynthesis were identified. The closest cultivated relative is Zwartia hollandica LF4-65 (GCF_019923725.1), with an average amino acid identity of 71.2% and average nucleotide identity of 71.6%. Current GTDB classification (R220): d_Bacteria; p_Pseudomonadota; c_Gammaproteobacteria; o_Burkholderiales; f_Burkholderiaceae; g_Zwartia; s_Zwartia sp030832095.	Zwartia	NCBI Assembly: GCA_965234315.1 Ts	seqco.de/i:48732