Search results
19


Svornostia abyssi gen. nov., sp. nov. isolated from the world’s deepest silver–uranium mine currently devoted to the extraction of radon-saturated water

Citation
Kapinusova et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (6)
Names
Svornostia
Abstract
A Gram-stain-positive, rod-shaped, aerobic, motile bacterium, J379T, was isolated from radioactive water spring C1, located in a former silver–uranium mine in the Czech Republic. This slow-growing strain exhibited optimal growth at 24–28 °C on solid media with <1 % salt concentration and alkaline pH 8–10. The only respiratory quinone found in strain J379T was MK-7(H4). C18 : 1 ω9c (60.9 %), C18 : 0 (9.4 %), C16 : 0 and alcohol-C18 : 0 (both 6.2 %) were found to be the major fatty acids. The p

Arcicella gelida sp. nov. and Arcicella lustrica sp. nov., isolated from streams in China and re-examining the taxonomic status of all the genera within the families Spirosomataceae and Cytophagaceae

Citation
Lu et al. (2024). International Journal of Systematic and Evolutionary Microbiology 74 (4)
Names
Chryseotaleaceae Leadbetterellaceae Flectobacillaceae
Abstract
Three Gram-stain-negative, aerobic, rod-shaped, non-motile strains (DC2WT, DC25WT, and LKC2W) were isolated from streams in China. Comparisons based on the 16S rRNA gene sequences showed that these three strains share 16S rRNA gene sequence similarity values over 97.0 % with the species of genus Arcicella. There was confusion due to the fact that all species of genera Flectobacillus, Aquirufa, and Sandaracinomonas show 16S rRNA gene sequence similarity of over 90.0 % to the above three strains,

Naming genera after geographical locations. Proposal to emend Appendix 9 of the International Code of Nomenclature of Prokaryotes

Citation
Oren, Chuvochina (2023). International Journal of Systematic and Evolutionary Microbiology 73 (5)
Names
Macondimonas Kapaibacterium
Abstract
Appendix 9, Section E of the International Code of Nomenclature of Prokaryotes provides guidelines on how to form adjectival specific and subspecific epithets that reflect the geographical location where the organism was found or studied. It does not mention ways of naming genera after geographical locations. We here propose emendation of Appendix 9 with the recommendations on how to form such names. Comments on the implementation of the current wording of Appendix 9, Section E are also made.

Aminithiophilus ramosus gen. nov., sp. nov., a sulphur-reducing bacterium isolated from a pyrite-forming enrichment culture, and taxonomic revision of the family Synergistaceae

Citation
Pradel et al. (2023). International Journal of Systematic and Evolutionary Microbiology 73 (2)
Names
Acetomicrobium Acetomicrobiaceae Aminiphilaceae Aminithiophilaceae Lactivibrio Aminobacteriaceae Rarimicrobium Jonquetella Dethiosulfovibrionaceae Thermovirga Thermovirgaceae
Abstract
A novel sulphur-reducing bacterium was isolated from a pyrite-forming enrichment culture inoculated with sewage sludge from a wastewater treatment plant. Based on phylogenetic data, strain J.5.4.2-T.3.5.2T could be affiliated with the phylum Synergistota . Among type strains of species with validly published names, the highest 16S rRNA gene sequence identity value was found with

Naming the unnamed: over 65,000 Candidatus names for unnamed Archaea and Bacteria in the Genome Taxonomy Database

Citation
Pallen et al. (2022). International Journal of Systematic and Evolutionary Microbiology 72 (9)
Names
“Afabia udivosa” “Afabia” “Afabiaceae” “Afabiales” “Afabiia” “Afabiota” “Paenistieleria bergensis”
Abstract
Thousands of new bacterial and archaeal species and higher-level taxa are discovered each year through the analysis of genomes and metagenomes. The Genome Taxonomy Database (GTDB) provides hierarchical sequence-based descriptions and classifications for new and as-yet-unnamed taxa. However, bacterial nomenclature, as currently configured, cannot keep up with the need for new well-formed names. Instead, microbiologists have been forced to use hard-to-remember alphanumeric placeholder labels. Here

Microbial communities of Auka hydrothermal sediments shed light on vent biogeography and the evolutionary history of thermophily

Citation
Speth et al. (2022). The ISME Journal 16 (7)
Names
Tharpellaceae Tharpella Tharpella aukensis Ts
Abstract
Abstract Hydrothermal vents have been key to our understanding of the limits of life, and the metabolic and phylogenetic diversity of thermophilic organisms. Here we used environmental metagenomics combined with analysis of physicochemical data and 16S rRNA gene amplicons to characterize the sediment-hosted microorganisms at the recently discovered Auka vents in the Gulf of California. We recovered 325 metagenome assembled genomes (MAGs) representing 54 phyla, over 30% of those cu

Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments

Citation
Alvarenga et al. (2021). International Journal of Systematic and Evolutionary Microbiology 71 (5)
Names
Amazonocrinis
Abstract
The cyanobacterial genus Nostoc is an important contributor to carbon and nitrogen bioavailability in terrestrial ecosystems and a frequent partner in symbiotic relationships with non-diazotrophic organisms. However, since this currently is a polyphyletic genus, the diversity of Nostoc -like cyanobacteria is considerably un

Proposal to reclassify the proteobacterial classes Deltaproteobacteria and Oligoflexia, and the phylum Thermodesulfobacteria into four phyla reflecting major functional capabilities

Citation
Waite et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (11)
Names
Myxococcia Polyangiia Pseudobdellovibrionaceae Bdellovibrionota Oligoflexia “Desulfofervidales” Ca. Desulfofervidaceae Ca. Desulfofervidus “Desulfofervidia” Ca. Magnetomorum “Magnetomoraceae” “Adiutricaceae” Ca. Adiutrix Myxococcota “Adiutricales”
Abstract
The class Deltaproteobacteria comprises an ecologically and metabolically diverse group of bacteria best known for dissimilatory sulphate reduction and predatory behaviour. Although this lineage is the fourth described class of the phylum Proteobacteria , it rarely affiliates with other proteobacterial classes and is freque

Lists of names of prokaryotic Candidatus taxa

Citation
Oren et al. (2020). International Journal of Systematic and Evolutionary Microbiology 70 (7)
Names
“Huberarchaeum crystalense” “Huberarchaeum” Ca. Allofontibacter Ca. Allofontibacter communis “Fermentibacteria” Ca. Fermentibacter danicus Ca. Fermentibacter Ca. Fermentibacteraceae “Fermentibacterales” “Methanofastidiosia” Ca. Methanofastidiosum Ca. Methanofastidiosum methylothiophilum Ca. Carsonella Ca. Carsonella ruddii “Altiarchaeum” Ca. Methylumidiphilus alinenensis Ca. Caldarchaeum Kryptonium thompsonii Ts “Sulfuripaludibacter” “Sulfuritelmatobacter” Sulfuritelmatomonas “Izemoplasma acidinucleici” Cloacimonas acidaminivorans Ts Cloacimonas Ca. Methanomethylicia Ca. Methanomethylicus Ca. Methanomethylicus mesodigestus Ca. Methanomethylicus oleisabuli “Methanosuratincola petrocarbonis” “Methanosuratincola” Ca. Branchiomonas cystocola Kapaibacterium Kapaibacterium thiocyanatum Ts Muiribacterium halophilum Ts Promineifilum Promineifilum breve Ts “Accumulibacter aalborgensis” “Acetithermum autotrophicum” “Aciduliprofundum boonei” “Actinochlamydia clariatis” “Actinochlamydia pangasianodontis” “Actinomarina minuta” “Adiacens aphidicola” “Aenigmatarchaeum subterraneum” “Aerophobus profundus” “Allobeggiatoa salina” “Allocryptoplasma californiense” “Allospironema culicis” “Altiarchaeum hamiconexum” “Altimarinus pacificus” “Aminicenans sakinawicola” “Amoebinatus massiliensis” “Amoebophilus asiaticus” “Amphibiichlamydia ranarum” “Amphibiichlamydia salamandrae” “Anammoxiglobus propionicus” “Anammoximicrobium moscoviense” “Aquiluna rubra” “Atelocyanobacterium thalassae” “Bandiella euplotis” “Blochmanniella camponoti” “Blochmanniella floridana” “Blochmanniella myrmotrichis” “Blochmanniella pennsylvanica” “Blochmanniella vafra” “Brevifilum fermentans” “Brocadia anammoxidans” “Brocadia sapporonensis” “Caenarcanum bioreactoricola” “Caldarchaeum subterraneum” “Caldatribacterium californiense” “Caldatribacterium saccharofermentans” “Calditenuis aerorheumatis” “Calescibacterium nevadense” “Captivus acidiprotistae” “Carbonibacillus altaicus” “Cardinium hertigii” “Catenimonas italica” “Cenarchaeum symbiosum” “Chloranaerofilum corporosum” “Chloroploca asiatica” “Chlorotrichoides halophilum” “Chryseopegocella kryptomonas” “Clavichlamydia salmonicola” “Cochliopodiiphilus cryoturris” “Combothrix italica” “Competibacter denitrificans” “Competibacter phosphatis” “Consessor aphidicola” “Contendibacter odensensis” “Contubernalis alkaliaceticus” “Criblamydia sequanensis” “Criblamydia” “Cryptoprodota polytropus” “Curculioniphilus buchneri” “Cyrtobacter comes” “Dactylopiibacterium carminicum” “Desulfofervidus auxilii” “Desulfonatronobulbus propionicus” “Doolittlea endobia” “Ecksteinia adelgidicola” “Electronema nielsenii” “Electronema palustre” Electrothrix arhusiensis Electrothrix communis Ts “Electrothrix japonica” “Electrothrix marina” “Endecteinascidia fromenterensis” “Endobugula glebosa” “Endobugula sertula” “Endolissoclinum faulkneri” “Endonucleibacter bathymodioli” “Endoriftia persephonae” “Endowatersipora glebosa” “Entotheonella factor” “Entotheonella palauensis” “Entotheonella serta” “Epixenosoma ejectans” “Epulonipiscioides gigas” “Epulonipiscioides saccharophilum” “Epulonipiscium fischelsonii” Fervidibacter sacchari Ts “Finniella inopinata” “Finniella lucida” “Finniella” “Flaviluna lacus” “Fodinibacter communicans” “Fokinia crypta” “Fokinia solitaria” “Fritschea bemisiae” “Fritschea eriococci” “Fukatsuia symbiotica” “Galacturonatibacter soehngenii” “Mariprofundia” “Moduliflexia” “Thermofontia” “Vecturitrichia” “Actinomarinales” “Altiarchaeales” “Gastranaerophilales” “Moduliflexales” “Nitrosocaldales” “Vecturitrichales” “Accumulibacter phosphatis” Sulfuritelmatomonas gaucii Ts Electronema aureum Ts Electronema Electrothrix Fervidibacter
Abstract
We here present annotated lists of names ofCandidatustaxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status ofCandidatustaxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names ofCandidatustaxa with additio