Seitz, Kiley W.


Publications
5

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
Asgardarchaeota
Abstract
AbstractIn the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evalua

Expansion of Armatimonadota through marine sediment sequencing describes two classes with unique ecological roles

Citation
Carlton et al. (2023). ISME Communications 3 (1)
Names
“Hebobacteraceae” “Hebobacterales” “Hebobacteria” “Zipacnadaceae” “Zipacnadales” “Zipacnadia” “Hebobacterum abditum” “Hebobacterum” “Zipacnadum vermilionense” “Zipacnadum”
Abstract
AbstractMarine sediments comprise one of the largest environments on the planet, and their microbial inhabitants are significant players in global carbon and nutrient cycles. Recent studies using metagenomic techniques have shown the complexity of these communities and identified novel microorganisms from the ocean floor. Here, we obtained 77 metagenome-assembled genomes (MAGs) from the bacterial phylum Armatimonadota in the Guaymas Basin, Gulf of California, and the Bohai Sea, China. These MAGs

Asgard archaea capable of anaerobic hydrocarbon cycling

Citation
Seitz et al. (2019). Nature Communications 10 (1)
Names
Abstract
AbstractLarge reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbo

Asgard archaea illuminate the origin of eukaryotic cellular complexity

Citation
Zaremba-Niedzwiedzka et al. (2017). Nature 541 (7637)
Names
Asgardarchaeota “Odinarchaeota”
Abstract