Moreira, David


Publications
3

Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines

Citation
Gutierrez-Preciado et al. (2024).
Names
“Karumarchaeum halophilus” “Abyssiniarchaeum dallolvicinus” “Haloaenigmatarchaeum” “Haloaenigmatarchaeum danakilense” “Abyssiniarchaeum” “Karumarchaeum” “Salsurabacterium abyssinicum” “Salsurabacterium” “Salsurabacteria”
Abstract
Few described archaeal, and fewer bacterial, lineages thrive at salt-saturating conditions, such as solar saltern crystallizers (salinity above 30%-w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ("salt-in" strategy), and have proteins adaptively enriched in negatively charged, acidic amino acids. Here, we analyzed metagenomes and metagenome-assembled genomes (MAGs) from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Dana

A New Gene Family Diagnostic for Intracellular Biomineralization of Amorphous Ca Carbonates by Cyanobacteria

Citation
Benzerara et al. (2022). Genome Biology and Evolution 14 (3)
Names
“Synechococcus calcipolaris”
Abstract
Abstract Cyanobacteria have massively contributed to carbonate deposition over the geological history. They are traditionally thought to biomineralize CaCO3 extracellularly as an indirect byproduct of photosynthesis. However, the recent discovery of freshwater cyanobacteria-forming intracellular amorphous calcium carbonates (iACC) challenges this view. Despite the geochemical interest of such a biomineralization process, its molecular mechanisms and evolutionary history remain elu