SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Siverio

JSON
See as cards

Siverio, Felipe


Publications
5

CitationNamesAbstract
Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR Quintana et al. (2022). Microorganisms 10 (6) Liberibacter “Liberibacter solanacearum”
Text
Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain Ruiz-Padilla et al. (2020). Microorganisms 8 (9) “Liberibacter solanacearum” Liberibacter
Text
‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae Quintana-González de Chaves et al. (2020). Insects 11 (8) “Liberibacter solanacearum” Liberibacter
Text
Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts Teresani et al. (2017). Spanish Journal of Agricultural Research 15 (4) “Liberibacter solanacearum”
Text
Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops Teresani et al. (2015). Spanish Journal of Agricultural Research 13 (1) “Liberibacter solanacearum”
Text

Assessment of Psyllid Handling and DNA Extraction Methods in the Detection of ‘Candidatus Liberibacter Solanacearum’ by qPCR
‘Candidatus Liberibacter solanacearum’ (CaLsol) is an uncultured bacterium, transmitted by psyllids and associated with several diseases in Solanaceae and Apiaceae crops. CaLsol detection in psyllids often requires insect destruction, preventing a subsequent morphological identification. In this work, we have assessed the influence on the detection of CaLsol by PCR in Bactericera trigonica (Hemiptera: Psyllidae), of four specimen preparations (entire body, ground, cut-off head, and punctured abdomen) and seven DNA extraction methods (PBS suspension, squashing on membrane, CTAB, Chelex, TRIsureTM, HotSHOT, and DNeasy®). DNA yield and purity ratios, time consumption, cost, and residues generated were also evaluated. Optimum results were obtained through grinding, but it is suggested that destructive procedures are not essential in order to detect CaLsol. Although CaLsol was detected by qPCR with DNA obtained by the different procedures, HotSHOT was the most sensitive method. In terms of time consumption and cost, squashed on membrane, HotSHOT, and PBS were the fastest, while HotSHOT and PBS were the cheapest. In summary, HotSHOT was accurate, fast, simple, and sufficiently sensitive to detect this bacterium within the vector. Additionally, cross-contamination with CaLsol was assessed in the ethanol solutions where B. trigonica specimens were usually collected and preserved. CaLsol-free psyllids were CaLsol-positive after incubation with CaLsol-positive specimens. This work provides a valuable guide when choosing a method to detect CaLsol in vectors according to the purpose of the study.
Assessment of Multilocus Sequence Analysis (MLSA) for Identification of Candidatus Liberibacter Solanacearum from Different Host Plants in Spain
Liberibacter is a bacterial group causing different diseases and disorders in plants. Among liberibacters, Candidatus Liberibacter solanaceraum (CLso) produces disorders in several species mainly within Apiaceae and Solanaceae families. CLso isolates are usually grouped in defined haplotypes according to single nucleotide polymorphisms in genes associated with ribosomal elements. In order to characterize more precisely isolates of CLso identified in potato in Spain, a Multilocus Sequence Analysis (MLSA) was applied. This methodology was validated by a complete analysis of ten housekeeping genes that showed an absence of positive selection and a nearly neutral mechanism for their evolution. Most of the analysis performed with single housekeeping genes, as well as MLSA, grouped together isolates of CLso detected in potato crops in Spain within the haplotype E, undistinguishable from those infecting carrots, parsnips or celery. Moreover, the information from these housekeeping genes was used to estimate the evolutionary divergence among the different CLso by using the concatenated sequences of the genes assayed. Data obtained on the divergence among CLso haplotypes support the hypothesis of evolutionary events connected with different hosts, in different geographic areas, and possibly associated with different vectors. Our results demonstrate the absence in Spain of CLso isolates molecularly classified as haplotypes A and B, traditionally considered causal agents of zebra chip in potato, as well as the uncertain possibility of the present haplotype to produce major disease outbreaks in potato that may depend on many factors that should be further evaluated in future works.
‘Candidatus Liberibacter Solanacearum’ Is Unlikely to Be Transmitted Spontaneously from Infected Carrot Plants to Citrus Plants by Trioza Erytreae
Bacteria belonging to ‘Candidatus Liberibacter spp.’ are associated with various severe diseases in the five continents. The African citrus psyllid Trioza erytreae (Hemiptera: Triozidae) is an efficient vector of citrus huanglongbing-HLB disease, absent in the Mediterranean basin. This psyllid is currently present in the islands and mainland Portugal and Spain, where the prevalence of ‘Ca. Liberibacter solanacearum’ (CaLsol) associated to a carrot disease is high. Trioza erytreae normally feeds on citrus plants but has also been observed on other crops. It would be a great concern to the Mediterranean citrus industry if T. erytreae could transmit this bacterium from carrots to citrus and cause disease; therefore, the transmission of CaLsol from carrot plants to citrus plants was experimentally assessed. Although CaLsol was initially detected on receptor citrus plants in transmission assays by dodder and budding, the infection was not established. The feeding behavior by electrical penetration graphs and oviposition of T. erytreae on carrot plants versus citrus plants was evaluated. Trioza erytreae only reached the phloem in citrus plants. However, it was able to acquire CaLsol from infected carrots but unable to transmit it to citrus plants. CaLsol was detected in some carrot plants immediately after 7 and 14 days (inoculation access period), but it was not detected after one month. Trioza erytreae was unable to complete its life cycle on carrot plants. In conclusion, the efficient vector of bacteria associated to huanglongbing was unable to transmit CaLsol from carrot to citrus plants, but it acquired and transmitted the bacterium from carrot to carrot plants with low efficiency.
Transmission of ‘Candidatus Liberibacter solanacearum’ by Bactericera trigonica Hodkinson to vegetable hosts
The bacterium ‘Candidatus Liberibacter solanacearum’ is a recent plant pathogen of several crops in Solanaceae and Apiaceae and is associated with economically important diseases. The bacterium is a carrot seed borne pathogen that can also be transmitted from potato mother tubers and by psyllid vectors. The psyllid Bactericera trigonica Hodkinson was described carrying CaLso associated with vegetative disorders in carrot and celery crops in Spain and its competence to transmit this phloem-limited bacterium among vegetables is currently being investigated. Here electrical penetration graphs showed that B. trigonica fed in the phloem of carrot and celery and probed the phloem in potato, but not in tomato plants. The bacterium was efficiently transmitted to carrot and celery plants when either single B. trigonica or groups of ten fed on these species. An inoculation access period of 24 hours was sufficient for a single B. trigonica to transmit the bacterium to carrot (67.8%), celery (21.1%) and eventually to potato and tomato (6.0%). Higher transmission rates were obtained with 10 individuals on celery (100%), carrot (80%), potato (10%) and tomato (10%). Bactericera trigonica laid eggs, and the hatched nymphs develop into adult on carrot and celery, but not on potato and tomato. CaLso was detected in 20% of the eggs laid by females carrying the bacterium. The results confirmed that B. trigonica is a vector of the bacterium to carrot and celery, and it is discussed the potential role of this psyllid in the transmission of the pathogen to potato and tomato plants.
Search for potential vectors of ‘Candidatus Liberibacter solanacearum’: population dynamics in host crops
‘Candidatus Liberibacter solanacearum’ has recently been reported to be associated with vegetative disorders and economic losses in carrot and celery crops in Spain. The bacterium is a carrot seedborne pathogen and it is transmitted by psyllid vector species. From 2011 to 2014 seasonal and occasional surveys in carrot, celery and potato plots were performed. The sticky plant method was used to monitor the arthropods that visited the plants. The collected arthropods were classified into Aphididae and Cicadellidae, and the superfamily Psylloidea was identified to the species level. The superfamily Psylloidea represented 35.45% of the total arthropods captured on celery in Villena and 99.1% on carrot in Tenerife (Canary Islands). The maximum flight of psyllid species was in summer, both in mainland Spain and the Canary Islands, reaching a peak of 570 specimens in August in Villena and 6,063 in July in Tenerife. The main identified psyllid species were as follows: Bactericera trigonica Hodkinson, B. tremblayi Wagner and B. nigricornis Förster. B. trigonica represented more than 99% of the psyllids captured in the Canary Islands and 75% and 38% in 2011 and 2012 in Villena, respectively. In addition, Trioza urticae Linnaeus, Bactericera sp., Ctenarytaina sp., Cacopsylla sp., Trioza sp. and Psylla sp. were captured. ‘Ca. L. solanacearum’ targets were detected by squash real-time PCR in 19.5% of the psyllids belonging to the different Bactericera species. This paper reports at least three new psyllid species that carry the bacterium and can be considered as potential vectors.
Search