van Loosdrecht, Mark C.M.


Publications
8

Metabolic implications for dual substrate growth in “CandidatusAccumulibacter”

Citation
Paez-Watson et al. (2025).
Names
“Accumulibacter”
Abstract
ABSTRACTThis study explores the metabolic implications of dual substrate uptake in“Candidatus Accumulibacter”, focusing on the co-consumption of volatile fatty acids and amino acids under conditions typical of enhanced biological phosphorus removal (EBPR) systems. Combining batch tests from highly enriched “Ca.Accumulibacter” cultures with conditional flux balance analysis (cFBA) predictions, we demonstrated that co-consumption of acetate and aspartate leads to synergistic metabolic interactions

Enrichment and application of bacterial sialic acids containing polymers from the extracellular polymeric substances of “Candidatus Accumulibacter”

Citation
Tomas-Martinez et al. (2022).
Names
“Accumulibacter”
Abstract
AbstractPseudaminic and legionaminic acids are a subgroup of nonulosonic acids (NulOs) unique to bacterial species. There is a lack of advances in the study of these NulOs due to their complex synthesis and production. Recently, it was seen that “Candidatus Accumulibacter” can produce Pse or Leg analogues as part of its extracellular polymeric substances (EPS). In order to employ a “Ca. Accumulibacter” enrichment as production platform for bacterial sialic acids, it is necessary to determine whi

Production of nonulosonic acids in the extracellular polymeric substances of “Candidatus Accumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2021). Applied Microbiology and Biotechnology 105 (8)
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
Abstract Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accu

Production of nonulosonic acids in the extracellular polymeric substances of “CandidatusAccumulibacter phosphatis”

Citation
Tomás-Martínez et al. (2020).
Names
“Accumulibacter” “Accumulibacter phosphatis”
Abstract
AbstractNonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in “CandidatusAccumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here

Revealing metabolic flexibility ofCandidatusAccumulibacter phosphatis through redox cofactor analysis and metabolic network modeling

Citation
da Silva et al. (2018).
Names
“Accumulibacter phosphatis”
Abstract
ABSTRACTEnvironmental fluctuations in the availability of nutrients lead to intricate metabolic strategies.CandidatusAccumulibacter phosphatis, a polyphosphate accumulating organism (PAO) responsible for enhanced biological phosphorus removal (EBPR) from wastewater treatment systems, is prevalent in aerobic/anaerobic environments. While the overall metabolic traits of these bacteria are well described, the inexistence of isolates has led to controversial conclusions on the metabolic pathways use