Wang, Xuefeng


Publications
18

Effector <scp>CLas0185</scp> targets methionine sulphoxide reductase <scp>B1</scp> of Citrus sinensis to promote multiplication of ‘Candidatus Liberibacter asiaticus’ via enhancing enzymatic activity of ascorbate peroxidase 1

Citation
Zhang et al. (2024). Molecular Plant Pathology 25 (9)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractCitrus huanglongbing (HLB) has been causing enormous damage to the global citrus industry. As the main causal agent, ‘Candidatus Liberibacter asiaticus’ (CLas) delivers a set of effectors to modulate host responses, while the modes of action adopted remain largely unclear. Here, we demonstrated that CLIBASIA_00185 (CLas0185) could attenuate reactive oxygen species (ROS)‐mediated cell death in Nicotiana benthamiana. Transgenic expression of CLas0185 in Citrus sinensis ‘Wanjincheng’ enhanc

Function and molecular mechanism analysis of CaLasSDE460 effector involved in the pathogenesis of “Candidatus Liberibacter asiaticus” in citrus

Citation
Wang et al. (2023). Molecular Horticulture 3 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractCitrus Huanglongbing (HLB), caused by Candidatus Liberibacter asiaticus (CaLas), is the most serious disease worldwide. CaLasSDE460 was previously characterized as a potential virulence factor of CaLas. However, the function and mechanism of CaLasSDE460 involved in CaLas against citrus is still elusive. Here, we showed that transgenic expression of CaLasSDE460 in Wanjincheng oranges (C. sinensis Osbeck) contributed to the early growth of CaLas and the development of symptoms. When the te

A Sec-dependent effector, CLIBASIA_04425, contributes to virulence in ‘Candidatus Liberibater asiaticus’

Citation
Zhang et al. (2023). Frontiers in Plant Science 14
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB) is the most destructive citrus disease worldwide, mainly caused by ‘Candidatus Liberibacter asiaticus’ (CLas). It encodes a large number of Sec-dependent effectors that contribute to HLB progression. In this study, an elicitor triggering ROS burst and cell death in Nicotiana benthamiana, CLIBASIA_04425 (CLas4425), was identified. Of particular interest, its cell death-inducing activity is associated with its subcellular localization and the cytoplasmic receptor Botryti

An effector of ‘Candidatus Liberibacter asiaticus’ manipulates autophagy to promote bacterial infection

Citation
Shi et al. (2023). Journal of Experimental Botany
Names
Ca. Liberibacter asiaticus
Abstract
Abstract Autophagy functions in plant host immunity responses to pathogen infection. The molecular mechanisms and functions used by the citrus Huanglongbing (HLB)-associated intracellular bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) to manipulate autophagy are unknown. We identified a CLas effector, SDE4405 (CLIBASIA_04405), which contributes to HLB progression. ‘Wanjincheng’ orange (Citrus sinensis) transgenic plants expressing SDE4405 promotes CLas proliferation and symp

Interaction between the flagellum of Candidatus Liberibacter asiaticus and the vitellogenin-like protein of Diaphorina citri significantly influences CLas titer

Citation
Peng et al. (2023). Frontiers in Microbiology 14
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) is a global devastating citrus disease that is mainly caused by “Candidatus Liberibacter asiaticus” (CLas). It is mostly transmitted by the insect Asian citrus psyllid (ACP, Diaphorina citri) in a persistent and proliferative manner. CLas traverses multiple barriers to complete an infection cycle and is likely involved in multiple interactions with D. citri. However, the protein–protein interactions between CLas and D. citri are largely unknown. Here, we report on a vitelloge

A “Candidatus Liberibacter asiaticus”-secreted polypeptide suppresses plant immune responses in Nicotiana benthamiana and Citrus sinensis

Citation
Shen et al. (2022). Frontiers in Plant Science 13
Names
Ca. Liberibacter asiaticus
Abstract
Citrus Huanglongbing (HLB), known as the most economically devastating disease in citrus industry, is mainly caused by phloem-restricted Gram-negative bacterium “Candidatus Liberibacter asiaticus” (CLas). To date, CLas is still unculturable in vitro, which has been dramatically delaying the research on its pathogenesis, and only few Sec-dependent effectors (SDEs) have been identified to elucidate the pathogenesis of CLas. Here, we confirmed that a CLas-secreted Sec-dependent polypeptide, namely