Pang, Zhiqian


Publications
8

Citrus Huanglongbing is an immune-mediated disease that can be treated by mitigating reactive oxygen species triggered cell death of the phloem tissues caused by Candidatus Liberibacter asiaticus

Citation
Wang et al. (2021).
Names
Ca. Liberibacter asiaticus
Abstract
AbstractThe immune system is critical for keeping animals and plants healthy from pathogens. However, immune-mediated diseases are also common for human. Immune-mediated diseases have not been reported for plants. Here, we present evidence that citrus Huanglongbing (HLB), caused by phloem-colonizing Candidatus Liberibacter asiaticus (CLas), is an immune-mediated disease. CLas infection of Citrus sinensis stimulated systemic and chronic immune response in the phloem tissues including reactive oxy

The Total Population Size of ‘Candidatus Liberibacter asiaticus’ Inside the Phloem of Citrus Trees and the Corresponding Metabolic Burden Related to Huanglongbing Disease Development

Citation
N.C. Vasconcelos et al. (2021). Phytopathology® 111 (7)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ (CLas) is the predominant causal agent of citrus huanglongbing, the most devastating citrus disease worldwide. CLas colonizes phloem tissue and causes phloem dysfunction. The pathogen population size in local tissues and in the whole plant is critical for the development of disease symptoms by determining the load of pathogenicity factors and metabolic burden to the host. However, the total population size of CLas in a whole plant and the ratio of CLas to cit

Residue Dynamics of Streptomycin in Citrus Delivered by Foliar Spray and Trunk Injection and Effect on ‘Candidatus Liberibacter asiaticus’ Titer

Citation
Li et al. (2021). Phytopathology® 111 (7)
Names
Ca. Liberibacter asiaticus
Abstract
Streptomycin (STR) has been used to control citrus huanglongbing (HLB) caused by ‘Candidatus Liberibacter asiaticus’ (CLas) via foliar spray. Here, we studied the residue dynamics of STR and its effect on CLas titers in planta applied by foliar spray and trunk injection of 3-year-old citrus trees that were naturally infected by CLas in the field. After foliar spray, STR levels in leaves peaked at 2 to 7 days postapplication (dpa) and gradually declined thereafter. The STR spray did not signific

Sec-Delivered Effector 1 (SDE1) of ‘Candidatus Liberibacter asiaticus’ Promotes Citrus Huanglongbing

Citation
Clark et al. (2020). Molecular Plant-Microbe Interactions® 33 (12)
Names
Ca. Liberibacter asiaticus
Abstract
Sec-delivered effector 1 (SDE1) from the huanglongbing (HLB)-associated bacterium ‘Candidatus Liberibacter asiaticus’ was previously characterized as an inhibitor of defense-related, papain-like cysteine proteases in vitro and in planta. Here, we investigated the contributions of SDE1 to HLB progression. We found that SDE1 expression in the model plant Arabidopsis thaliana caused severe yellowing in mature leaves, reminiscent of both ‘Ca. L. asiaticus’ infection symptoms and accelerated leaf se

The in Planta Effective Concentration of Oxytetracycline Against ‘Candidatus Liberibacter asiaticus’ for Suppression of Citrus Huanglongbing

Citation
Li et al. (2019). Phytopathology® 109 (12)
Names
Ca. Liberibacter asiaticus
Abstract
Huanglongbing (HLB) or greening currently is the most devastating citrus disease worldwide. The fastidious phloem-colonizing bacterium ‘Candidatus Liberibacter asiaticus’ (CLas) is the causal agent of citrus HLB in Florida. Bactericides containing the active ingredient oxytetracycline (OTC) have been used in foliar spray to control citrus HLB in Florida since 2016. However, the minimum concentration of OTC required to suppress CLas in planta remains unknown. We developed a new method for evalua

‘Candidatus Liberibacter asiaticus’ Encodes a Functional Salicylic Acid (SA) Hydroxylase That Degrades SA to Suppress Plant Defenses

Citation
Li et al. (2017). Molecular Plant-Microbe Interactions® 30 (8)
Names
Ca. Liberibacter asiaticus
Abstract
Pathogens from the fastidious, phloem-restricted ‘Candidatus Liberibacter’ species cause the devastating Huanglongbing (HLB) disease in citrus worldwide and cause diseases on many solanaceous crops and plants in the Apiaceae family. However, little is known about the pathogenic mechanisms due to the difficulty in culturing the corresponding ‘Ca. Liberibacter’ species. Here, we report that the citrus HLB pathogen ‘Ca. L. asiaticus’ uses an active salicylate hydroxylase SahA to degrade salicylic