SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Borneman

JSON
See as cards

Borneman, James


Publications
4

CitationNamesAbstract
Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus Mallawarachchi et al. (2024). Journal of Applied Microbiology 135 (4) Ca. Liberibacter asiaticus
Text
Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts Zuñiga et al. (2020). npj Systems Biology and Applications 6 (1) Ca. Liberibacter asiaticus
Text
An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-“ Candidatus Liberibacter asiaticus” Properties Blacutt et al. (2020). Applied and Environmental Microbiology 86 (8) Ca. Liberibacter asiaticus
Text
Bacterial and Fungal Next Generation Sequencing Datasets and Metadata from Citrus Infected with ‘Candidatus Liberibacter asiaticus’ Ginnan et al. (2018). Phytobiomes Journal 2 (2) Ca. Liberibacter asiaticus
Text

Specifically targeting antimicrobial peptides for inhibition of Candidatus Liberibacter asiaticus
Abstract Aims Huanglongbing (citrus greening) is a plant disease putatively caused by the unculturable Gram-negative bacterium Candidatus Liberibacter asiaticus (CLas), and it has caused severe damage to citrus plantations worldwide. There are no definitive treatments for this disease, and conventional disease control techniques have shown limited efficacy. This work presents an in silico evaluation of using specifically targeting anti-microbial peptides (STAMPs) consisting of a targeting segment and an antimicrobial segment to inhibit citrus greening by inhibiting the BamA protein of CLas, which is an outer membrane protein crucial for bacterial viability. Methods and results Initially, a set of peptides with a high affinity toward BamA protein were screened and evaluated via molecular docking and molecular dynamics simulations and were verified in vitro via bio-layer interferometry (BLI). In silico studies and BLI experiments indicated that two peptides, HASP2 and HASP3, showed stable binding to BamA. Protein structures for STAMPs were created by fusing known anti-microbial peptides (AMPs) with the selected short peptides. The binding of STAMPs to BamA was assessed using molecular docking and binding energy calculations. The attachment of high-affinity short peptides significantly reduced the free energy of binding for AMPs, suggesting that it would make it easier for the STAMPs to bind to BamA. Efficacy testing in vitro using a closely related CLas surrogate bacterium showed that STAMPs had greater inhibitory activity than AMP alone. Conclusions In silico and in vitro results indicate that the STAMPs can inhibit CLas surrogate Rhizobium grahamii more effectively compared to AMPs, suggesting that STAMPs can achieve better inhibition of CLas, potentially via enhancing the site specificity of AMPs.
Linking metabolic phenotypes to pathogenic traits among “Candidatus Liberibacter asiaticus” and its hosts
AbstractCandidatus Liberibacter asiaticus (CLas) has been associated with Huanglongbing, a lethal vector-borne disease affecting citrus crops worldwide. While comparative genomics has provided preliminary insights into the metabolic capabilities of this uncultured microorganism, a comprehensive functional characterization is currently lacking. Here, we reconstructed and manually curated genome-scale metabolic models for the six CLas strains A4, FL17, gxpsy, Ishi-1, psy62, and YCPsy, in addition to a model of the closest related culturable microorganism, L. crescens BT-1. Predictions about nutrient requirements and changes in growth phenotypes of CLas were confirmed using in vitro hairy root-based assays, while the L. crescens BT-1 model was validated using cultivation assays. Host-dependent metabolic phenotypes were revealed using expression data obtained from CLas-infected citrus trees and from the CLas-harboring psyllid Diaphorina citri Kuwayama. These results identified conserved and unique metabolic traits, as well as strain-specific interactions between CLas and its hosts, laying the foundation for the development of model-driven Huanglongbing management strategies.
An In Vitro Pipeline for Screening and Selection of Citrus-Associated Microbiota with Potential Anti-“ Candidatus Liberibacter asiaticus” Properties
Globally, citrus is threatened by huanglongbing (HLB), and the lack of effective control measures is a major concern of farmers, markets, and consumers. There is compelling evidence that plant health is a function of the activities of the plant's associated microbiome. Using Liberibacter crescens , a culturable surrogate for the unculturable HLB-associated bacterium “ Candidatus Liberibacter asiaticus,” we tested the hypothesis that members of the citrus microbiome produce potential anti-“ Ca . Liberibacter asiaticus” natural products with potential anti-“ Ca . Liberibacter asiaticus” activity. A subset of isolates obtained from the microbiome inhibited L. crescens growth in an agar diffusion inhibition assay. Further fractionation experiments linked the inhibitory activity of the fungus Cladosporium cladosporioides to the fungus-produced natural products cladosporols A, C, and D, demonstrating dose-dependent antagonism to L. crescens .
Bacterial and Fungal Next Generation Sequencing Datasets and Metadata from Citrus Infected with ‘Candidatus Liberibacter asiaticus’
Citrus production throughout the world is being severely threatened by Huanglongbing (HLB), which is a disease associated with the bacteria ‘Candidatus Liberibacter asiaticus’ (CLas), africanus, and americanus. This Resource Announcement provides amplicon-based next generation sequencing (NGS) datasets of the bacterial and fungal rRNA internal transcribed spacer (ITS) region from CLas-infected citrus budwood, leaves, and roots from five orchards located in different geographical regions in Florida (USA). To our knowledge, this is the first amplicon-based NGS study (i) that describes the fungal taxa associated with citrus and (ii) that provides comparative analyses of the bacterial and fungal taxa associated with budwood, leaves, and roots from the same citrus trees. This report also provides the sample metadata linked to these sequence datasets including HLB severity rating, tissue type, citrus rootstock, citrus scion, geographical region, and year trees were planted. When analyzed with other similar datasets, we anticipate that researchers will be able to obtain a greater understanding of the factors that shape the citrus microbiome as well as identify individual microorganisms or consortia of microorganisms that play a role in HLB suppression or exacerbation.
Search