Cai, Weili


Publications
3

Draft Genome Sequence of ‘Candidatus Phytoplasma pini’-Related Strain MDPP: A Resource for Comparative Genomics of Gymnosperm-Infecting Phytoplasmas

Citation
Cai et al. (2020). Plant Disease 104 (4)
Names
Ca. Phytoplasma pini
Abstract
‘Candidatus Phytoplasma pini’-related strain MDPP, the reference strain of subgroup 16SrXXI-B, is a pathogen associated with witches’ broom disease of Pinus spp. in North America. Here, we report the first draft genome sequence of ‘Ca. Phytoplasma pini’ strain MDPP, which consists of 474,136 bases, with a G + C content of 22.22%. This information will facilitate comparative genomics of gymnosperm-infecting phytoplasmas.

Genome Resource for the Huanglongbing Causal Agent ‘Candidatus Liberibacter asiaticus’ Strain AHCA17 from Citrus Root Tissue in California, USA

Citation
Cai et al. (2020). Plant Disease 104 (3)
Names
Ca. Liberibacter asiaticus
Abstract
‘Candidatus Liberibacter asiaticus’ is the unculturable causative agent of citrus huanglongbing disease. Here, we report the first citrus root metagenome sequence containing the draft genome of ‘Ca. L. asiaticus’ strain AHCA17, obtained from a pummelo tree in California. The assembled genome was 1.2 Mbp and resulted in 37 contigs (N50 = 158.7 kbp) containing 1,057 predicted open reading frames and 45 RNA-coding genes. This draft genome will provide a valuable resource in further study of ‘Ca. L

SureSelect targeted enrichment, a new cost effective method for the whole genome sequencing of Candidatus Liberibacter asiaticus

Citation
Cai et al. (2019). Scientific Reports 9 (1)
Names
Ca. Liberibacter asiaticus
Abstract
AbstractHuanglongbing (HLB) is a worldwide deadly citrus disease caused by the phloem-limited bacteria ‘Candidatus Liberibacter asiaticus’ (CLas) vectored by Asian citrus psyllids. In order to effectively manage this disease, it is crucial to understand the relationship among the bacterial isolates from different geographical locations. Whole genome sequencing approaches will provide more precise molecular characterization of the diversity among populations. Due to the lack of in vitro culture,