Janik, Katrin


Publications
5

‘Candidatus Phytoplasma mali’ SAP11-Like protein modulates expression of genes involved in energy production, photosynthesis, and defense in Nicotiana occidentalis leaves

Citation
Mittelberger et al. (2024). BMC Plant Biology 24 (1)
Names
Ca. Phytoplasma mali
Abstract
Abstract Background ‘Candidatus Phytoplasma mali’, the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TEOSINTE BRANCHED1/ CYCLOIDEA/ PROLIFERATING CELL FACTOR 1 and 2 (TCP) transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M

'Candidatus Phytoplasma mali' SAP11-Like protein modulates expression of genes involved in metabolic pathways, photosynthesis, and defense in Nicotiana occidentalis leaves

Citation
Mittelberger et al. (2024).
Names
Ca. Phytoplasma mali
Abstract
Abstract Background: 'Candidatus Phytoplasma mali', the causal agent of apple proliferation disease, exerts influence on its host plant through various effector proteins, including SAP11CaPm which interacts with different TCP transcription factors. This study examines the transcriptional response of the plant upon early expression of SAP11CaPm. For that purpose, leaves of Nicotiana occidentalis H.-M. Wheeler were Agrobacterium-infiltrated to induce transient expression of SAP11CaPm and c

The ‘Candidatus Phytoplasma mali’ effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection

Citation
Mittelberger et al. (2022). PLOS ONE 17 (12)
Names
Ca. Phytoplasma asteris Ca. Phytoplasma mali
Abstract
’Candidatus Phytoplasma mali’, is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from ’Candidatus Phytoplasma asteris’. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known

The ‘Candidatus Phytoplasma mali’ effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection

Citation
Mittelberger et al. (2022).
Names
Ca. Phytoplasma asteris Ca. Phytoplasma mali
Abstract
Abstract‘Candidatus Phytoplasma mali’, is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from ‘Candidatus Phytoplasma asteris’. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, als

Effect of Daytime and Tree Canopy Height on Sampling of Cacopsylla melanoneura, a ‘Candidatus Phytoplasma mali’ Vector

Citation
Barthel et al. (2020). Plants 9 (9)
Names
Ca. Phytoplasma mali
Abstract
The psyllids Cacopsylla melanoneura and Cacopsylla picta reproduce on apple (Malus × domestica) and transmit the bacterium ‘Candidatus Phytoplasma mali’, the causative agent of apple proliferation. Adult psyllids were collected by the beating-tray method from lower and upper parts of the apple tree canopy in the morning and in the afternoon. There was a trend of catching more emigrant adults of C.melanoneura in the morning and in the lower part of the canopy. For C.melanoneura remigrants, no dif