SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Weissbrodt

JSON
See as cards

Weissbrodt, David G.


Publications
3

CitationNamesAbstract
Enrichment and application of bacterial sialic acids containing polymers from the extracellular polymeric substances of “Candidatus Accumulibacter” Tomas-Martinez et al. (2022). “Accumulibacter”
Production of nonulosonic acids in the extracellular polymeric substances of “Candidatus Accumulibacter phosphatis” Tomás-Martínez et al. (2021). Applied Microbiology and Biotechnology 105 (8) “Accumulibacter” “Accumulibacter phosphatis”
Production of nonulosonic acids in the extracellular polymeric substances of “CandidatusAccumulibacter phosphatis” Tomás-Martínez et al. (2020). “Accumulibacter” “Accumulibacter phosphatis”

Enrichment and application of bacterial sialic acids containing polymers from the extracellular polymeric substances of “Candidatus Accumulibacter”
AbstractPseudaminic and legionaminic acids are a subgroup of nonulosonic acids (NulOs) unique to bacterial species. There is a lack of advances in the study of these NulOs due to their complex synthesis and production. Recently, it was seen that “Candidatus Accumulibacter” can produce Pse or Leg analogues as part of its extracellular polymeric substances (EPS). In order to employ a “Ca. Accumulibacter” enrichment as production platform for bacterial sialic acids, it is necessary to determine which fractions of the EPS of “Ca. Accumulibacter” contain NulOs and how to enrich and/or isolate them. We extracted the EPS from granules enriched with “Ca. Accumulibcater” and used size-exclusion chromatography to separate them into different molecular weight fractions. This separation resulted in two high molecular weight (> 5,500 kDa) fractions dominated by polysaccharides, with a NulO content up to 4 times higher than the extracted EPS. This suggests that NulOs in “Ca. Accumulibacter” are likely located in high molecular weight polysaccharides. Additionally, it was seen that the extracted EPS and the NulO-rich fractions can bind and neutralize histones. This suggest that they can serve as source for sepsis treatment drugs, although further purification needs to be evaluated.Graphical abstractHighlightsNulOs in “Ca. Accumulibacter” are likely located in high molecular weight polysaccharides.Size exclusion chromatography allows to obtain high molecular weight polysaccharide-rich fractions enriched with NulOs.EPS and the NulOs-rich fractions can serve as source for sepsis treatment drugs.
Production of nonulosonic acids in the extracellular polymeric substances of “Candidatus Accumulibacter phosphatis”
Abstract Nonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as an important compound in the extracellular matrix of virtually all microbial life and in “Candidatus Accumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here, bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates, such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of “Ca. Accumulibacter” to produce different types of NulOs. Proteomic analysis showed the ability of “Ca. Accumulibacter” to reutilize and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria, which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of “Ca. Accumulibacter” in particular, and biofilms in general. Key Points •“Ca. Accumulibacter” has the potential to produce a range of nonulosonic acids. •Mass spectrometry and lectin binding can reveal the presence and location of nonulosonic acids. •The role of nonulosonic acid in non-pathogenic bacteria needs to be studied in detail.
Production of nonulosonic acids in the extracellular polymeric substances of “CandidatusAccumulibacter phosphatis”
AbstractNonulosonic acids (NulOs) are a family of acidic carbohydrates with a nine-carbon backbone, which include different related structures, such as sialic acids. They have mainly been studied for their relevance in animal cells and pathogenic bacteria. Recently, sialic acids have been discovered as important compound in the extracellular matrix of virtually all microbial life and in “CandidatusAccumulibacter phosphatis”, a well-studied polyphosphate-accumulating organism, in particular. Here, bioaggregates highly enriched with these bacteria (approx. 95% based on proteomic data) were used to study the production of NulOs in an enrichment of this microorganism. Fluorescence lectin-binding analysis, enzymatic quantification, and mass spectrometry were used to analyze the different NulOs present, showing a wide distribution and variety of these carbohydrates, such as sialic acids and bacterial NulOs, in the bioaggregates. Phylogenetic analysis confirmed the potential of “Ca. Accumulibacter” to produce different types of NulOs. Proteomic analysis showed the ability of “Ca. Accumulibacter” to reutilize and reincorporate these carbohydrates. This investigation points out the importance of diverse NulOs in non-pathogenic bacteria, which are normally overlooked. Sialic acids and other NulOs should be further investigated for their role in the ecology of “Ca. Accumulibacter” in particular, and biofilms in general.Key Points“Ca.Accumulibacter” has the potential to produce a range of nonulosonic acids.Mass spectrometry and lectin binding can reveal the presence and location of nonulosonic acids.Role of nonulosonic acid in non-pathogenic bacteria needs to be studied in detail.
Search