Kladnik, Aleš


Publications
4

Candidate pathogenicity factor/effector proteins of ‘Candidatus Phytoplasma solani’ modulate plant carbohydrate metabolism, accelerate the ascorbate–glutathione cycle, and induce autophagosomes

Citation
Dermastia et al. (2023). Frontiers in Plant Science 14
Names
Ca. Phytoplasma solani
Abstract
The pathogenicity of intracellular plant pathogenic bacteria is associated with the action of pathogenicity factors/effectors, but their physiological roles for most phytoplasma species, including ‘Candidiatus Phytoplasma solani’ are unknown. Six putative pathogenicity factors/effectors from six different strains of ‘Ca. P. solani’ were selected by bioinformatic analysis. The way in which they manipulate the host cellular machinery was elucidated by analyzing Nicotiana benthamiana leaves after A

Geographical and Temporal Diversity of ‘Candidatus Phytoplasma solani' in Wine-Growing Regions in Slovenia and Austria

Citation
Mehle et al. (2022). Frontiers in Plant Science 13
Names
Ca. Phytoplasma solani
Abstract
As the causal agent of the grapevine yellows disease Bois noir, ‘Candidatus Phytoplasma solani' has a major economic impact on grapevines. To improve the control of Bois noir, it is critical to understand the very complex epidemiological cycles that involve the multiple “Ca. P. solani” host plants and insect vectors, of which Hyalesthes obsoletus is the most important. In the present study, multiple genotyping of the tuf, secY, stamp, and vmp1 genes was performed. This involved archived grapevin

New Cross-Talks between Pathways Involved in Grapevine Infection with ‘Candidatus Phytoplasma solani’ Revealed by Temporal Network Modelling

Citation
Škrlj et al. (2021). Plants 10 (4)
Names
Ca. Phytoplasma solani
Abstract
Understanding temporal biological phenomena is a challenging task that can be approached using network analysis. Here, we explored whether network reconstruction can be used to better understand the temporal dynamics of bois noir, which is associated with ‘Candidatus Phytoplasma solani’, and is one of the most widespread phytoplasma diseases of grapevine in Europe. We proposed a methodology that explores the temporal network dynamics at the community level, i.e., densely connected subnetworks. T

Differential Response of Grapevine to Infection with ‘Candidatus Phytoplasma solani’ in Early and Late Growing Season through Complex Regulation of mRNA and Small RNA Transcriptomes

Citation
Dermastia et al. (2021). International Journal of Molecular Sciences 22 (7)
Names
Ca. Phytoplasma solani
Abstract
Bois noir is the most widespread phytoplasma grapevine disease in Europe. It is associated with ‘Candidatus Phytoplasma solani’, but molecular interactions between the causal pathogen and its host plant are not well understood. In this work, we combined the analysis of high-throughput RNA-Seq and sRNA-Seq data with interaction network analysis for finding new cross-talks among pathways involved in infection of grapevine cv. Zweigelt with ‘Ca. P. solani’ in early and late growing seasons. While t