SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Igwe

JSON
See as cards

Igwe, David O


Publications
2

CitationNamesAbstract
Plant-derived, nodule-specific cysteine rich peptides inhibit growth and psyllid acquisition of ‘CandidatusLiberibacter asiaticus’, the citrus Huanglongbing bacterium Higgins et al. (2023).
An Excised Leaf Assay to Measure Acquisition of ‘Candidatus Liberibacter asiaticus’ by Psyllids Associated with Citrus Huanglongbing Disease Igwe et al. (2022). Phytopathology® 112 (1) Ca. Liberibacter asiaticus

Plant-derived, nodule-specific cysteine rich peptides inhibit growth and psyllid acquisition of ‘CandidatusLiberibacter asiaticus’, the citrus Huanglongbing bacterium
AbstractThe Asian citrus psyllid,Diaphorina citri, is a vector of ‘CandidatusLiberibacter asiaticus’ (CLas), a gram-negative, obligate biotroph whose infection inCitrusspecies is associated with citrus greening disease, or Huanglongbing (HLB). Strategies to blockCLas transmission byD. citriremain the best way to prevent the spread of the disease into new citrus growing regions. However, identifying control strategies to block HLB transmission poses significant challenges, such as the discovery and delivery of antimicrobial compounds targeting the bacterium and overcoming consumer hesitancy towards accepting the treatment. Here, we computationally identified and tested a series of 20-mer nodule-specific cysteine-rich peptides (NCRs) derived from the Mediterranean legume,Medicago truncatulaGaertn. (barrelclover) to identify those peptides that could effectively prevent or reduceCLas infection in citrus leaves and/or preventCLas acquisition by the bacterium’s insect vector,D. citri. A set of NCR peptides were tested in a screening pipeline involving three distinct assays: a bacterial culture assay, aCLas-infected excised citrus leaf assay, and aCLas-infected nymph acquisition assay that includedD. citrinymphs, the only stage ofD. citri’s life-cycle that can acquireCLas leading to the development of vector competent adult insects. We demonstrate that a subset ofM. truncatula-derived NCRs inhibit bothCLas growth in citrus leaves andCLas acquisition byD. citrifromCLas-infected leaves. These findings reveal NCR peptides as a new class and source of biopesticide molecules to controlCLas for the prevention and/or treatment of HLB.
An Excised Leaf Assay to Measure Acquisition of ‘Candidatus Liberibacter asiaticus’ by Psyllids Associated with Citrus Huanglongbing Disease
Huanglongbing, or citrus greening disease, is the most serious disease of citrus worldwide and is associated with plant infection by ‘Candidatus Liberibacter asiaticus’ (CLas) and other Liberibacter species. CLas is transmitted by Diaphorina citri, the Asian citrus psyllid, in a circulative propagative manner. Circulative propagative transmission is a complex process comprising at least three steps: movement of the pathogen into vector tissues, translocation and replication of the pathogen within the vector host, and pathogen inoculation of a new host by the vector. In this work, we describe an excised leaf CLas acquisition assay, which enables precise measurements of CLas acquisition by D. citri in a streamlined laboratory assay. Briefly, healthy fourth and fifth instar D. citri nymphs acquire CLas from excised CLas-positive leaves, where the insects also complete their developmental cycle. CLas titer in the resulting adults is measured using quantitative PCR and CLas-specific 16S rRNA gene primers. We observed positive correlations between CLas titer in each leaf replicate and the CLas titer that developed in the insects after acquisition (rs = 0.78; P = 0.0002). This simple assay could be used to detect CLas acquisition phenotypes and their underlying genotypes, facilitate assessment of plant factors that impact acquisition, and screen for compounds that interfere with CLas acquisition by delivering these compounds through the excised leaf.
Search