Eme, Laura


Publications
6

Extremely acidic proteomes and metabolic flexibility in bacteria and highly diversified archaea thriving in geothermal chaotropic brines

Citation
Gutierrez-Preciado et al. (2024).
Names
“Karumarchaeum halophilus” “Abyssiniarchaeum dallolvicinus” “Haloaenigmatarchaeum” “Haloaenigmatarchaeum danakilense” “Abyssiniarchaeum” “Karumarchaeum” “Salsurabacterium abyssinicum” “Salsurabacterium” “Salsurabacteria”
Abstract
Few described archaeal, and fewer bacterial, lineages thrive at salt-saturating conditions, such as solar saltern crystallizers (salinity above 30%-w/v). They accumulate molar K+ cytoplasmic concentrations to maintain osmotic balance ("salt-in" strategy), and have proteins adaptively enriched in negatively charged, acidic amino acids. Here, we analyzed metagenomes and metagenome-assembled genomes (MAGs) from geothermally influenced hypersaline ecosystems with increasing chaotropicity in the Dana

Phylogenomics and ancestral reconstruction of Korarchaeota reveals genomic adaptation to habitat switching

Citation
Tahon et al. (2023).
Names
“Korarchaeum calidifontum” “Caldabyssikora” “Korarchaeum” “Caldabyssikoraceae” “Caldabyssikora taketomiensis” “Caldabyssikora guaymasensis” “Thermotainarokoraceae” “Thermotainarokora guaymasensis” “Thermotainarokora taketomiensis” “Hydrocaminikoraceae”
Abstract
AbstractOur knowledge of archaeal diversity and evolution has expanded rapidly in the past decade. However, hardly any genomes of the phylum Korarchaeota have been obtained due to the difficulty in accessing their natural habitats and – possibly – their limited abundance. As a result, many aspects of Korarchaeota biology, physiology and evolution remain enigmatic. Here, we expand this phylum with five high-quality metagenome-assembled genomes. This improved taxon sampling combined with sophistic

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
“Asgardarchaeota”
Abstract
AbstractIn the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evalua

A closed Candidatus Odinarchaeum chromosome exposes Asgard archaeal viruses

Citation
Tamarit et al. (2022). Nature Microbiology 7 (7)
Names
Ca. Odinarchaeum yellowstonii
Abstract
AbstractAsgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology, and particularly their virome, remain enigmatic. We reassembled and closed the chromosome of Candidatus Odinarchaeum yellowstonii LCB_4, through long-range PCR, revealing CRISPR spacers targeting viral contigs. We found related viruses in the genomes of diverse prokaryotes from geothermal environments, including other Asgard archaea. These viruses open research avenues into the ec

A closed Candidatus Odinarchaeum genome exposes Asgard archaeal viruses

Citation
Tamarit et al. (2021).
Names
Ca. Odinarchaeum yellowstonii
Abstract
Asgard archaea have recently been identified as the closest archaeal relatives of eukaryotes. Their ecology remains enigmatic, and their virome, completely unknown. Here, we describe the closed genome of Ca. Odinarchaeum yellowstonii LCB_4, and, from this, obtain novel CRISPR arrays with spacer targets to several viral contigs. We find related viruses in sequence data from thermophilic environments and in the genomes of diverse prokaryotes, including other Asgard archaea. These novel viruses ope

Asgard archaea capable of anaerobic hydrocarbon cycling

Citation
Seitz et al. (2019). Nature Communications 10 (1)
Names
Abstract
AbstractLarge reservoirs of natural gas in the oceanic subsurface sustain complex communities of anaerobic microbes, including archaeal lineages with potential to mediate oxidation of hydrocarbons such as methane and butane. Here we describe a previously unknown archaeal phylum, Helarchaeota, belonging to the Asgard superphylum and with the potential for hydrocarbon oxidation. We reconstruct Helarchaeota genomes from metagenomic data derived from hydrothermal deep-sea sediments in the hydrocarbo