Mycorrhization Mitigates Disease Caused by “Candidatus Liberibacter solanacearum” in Tomato


Citation
Tiénébo et al. (2019). Plants 8 (11)
Names (1)
Subjects
Ecology Ecology, Evolution, Behavior and Systematics Plant Science
Abstract
Disease caused by the bacterial pathogen “Candidatus Liberibacter solanacearum” (Lso) represents a serious threat to solanaceous crop production. Insecticide applications to control the psyllid vector, Bactericera cockerelli Šulc (Hemiptera: Triozidae) has led to the emergence of resistance in psyllids populations. Efforts to select natural resistant cultivars have been marginally successful and have been complicated by the presence of distinct Lso haplotypes (LsoA, LsoB) differing in symptoms severity on potato and tomato. A potentially promising management tool is to boost host resistance to the pathogen and/or the insect vector by promoting mycorrhization. Here we tested the hypothesis that mycorrhizal fungi can mitigate the effect of Lso infection on tomato plants. The presence of mycorrhizal fungi substantially delayed and reduced the incidence of Lso-induced symptoms on tomato as compared to non-mycorrhized plants. However, PCR with specific Lso primers revealed that mycorrhization did not prevent Lso transmission or translocation to newly formed leaves. Mycorrhization significantly reduced oviposition by psyllids harboring LsoA and survival of nymphs from these eggs. However, mycorrhization had no effect on oviposition by psyllids harboring LsoB or the survival of nymphs from parents harboring LsoB. These findings indicate the use of mycorrhizal fungi is a promising strategy for the mitigation of disease caused by both LsoA and LsoB and warrants additional field testing.
Authors
Publication date
2019-11-15
DOI
10.3390/plants8110507

© 2022-2024 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license