SeqCode Registry
Register List https://seqco.de/r:x3m88du8 [2024]

Register list for 16 new names including Fervidibacteria classis nov.

Submitted by Palmer, Marike

Table 1: Complete list of names proposed in the current register list.

Proposed Taxon Etymology Description Parent Taxon Type Registry URL
Class Fervidibacteria [Fer.vi.di.bac.ter'i.a] N.L. masc. n. Fervidibacter, referring to the type genus Fervidibacter; -ia, ending to denote a class; N.L. neut. pl. n. Fervidibacteria, the Fervidibacter class
The description for the class is the same as for the order Fervidibacterales. Phylogenomic placement of this lineage within the Armatimonadota and relative evolutionary divergence supports delineation of this lineage as a class within the Armatimonadota.
Armatimonadota Fervidibacter seqco.de/i:44092
Order Fervidibacterales [Fer.vi.di.bac.ter.a'les] N.L. masc. n. Fervidibacter, referring to the type genus Fervidibacter; -ales, ending to denote an order; N.L. fem. pl. n. Fervidibacterales, the Fervidibacter order
Members of the order are aerobic or anaerobic, with both high- and low-affinity terminal oxidases present in the aerobic Fervidibacterales. All members are likely polysaccharide degraders as numerous carbohydrate active enzymes are found in all members of the order. Phylogenomics and relative evolutionary divergence places this order in the class Fervidibacteria.
Fervidibacteria Fervidibacter seqco.de/i:44091
Family Fervidibacteraceae [Fer.vi.di.bac.ter.a'ce.ae] N.L. masc. n. Fervidibacter, referring to the type genus Fervidibacter; -aceae, ending to denote a family; N.L. fem. pl. n. Fervidibacteraceae, the Fervidibacter family
Most members of the family are aerobic, with both the high-affinity and low-affinity terminal oxidases present in the genomes. All members are likely polysaccharide-degrading with numerous carbohydrate-active enzymes encoded by genomes of the family. GC content in the family range between 49% and 59%. The oxidative pentose phosphate pathway and the tricarboxylic acid cycle are complete for the family.
Fervidibacterales Fervidibacter seqco.de/i:44090
Family Thermosaccharophagaceae [Ther.mo.sac.cha.ro.pha.ga'ce.ae] N.L. masc. n. Thermosaccharophagus, type genus of the family; aceae, ending to denote a family; N.L. fem. pl. n. Thermosaccharophagaceae, the family of the genus Thermosaccharophagus
The description for the family is the same as for the genus Thermosaccharophagus. Phylogenomic placement of this lineage and relative evolutionary divergence supports delineation of this group as a family within the Fervidibacterales.
Fervidibacterales Thermosaccharophagus seqco.de/i:44089
Genus Fervidibacter [Fer.vi.di.bac'ter] L. masc. adj. fervidus, hot, steaming; N.L. masc. n. bacter, a rod; N.L. masc. n. Fervidibacter, a hot rod
Genomes belonging to the genus have been recovered from metagenomic sequence data from thermal environments in Antarctica, Canada, China, Japan, and USA. GC content within the genus range between 49% to 59%. Phylogenomic congruence and relative evolutionary divergence along with ANI and AAI values support designation of this group as a genus. ANI values among species in the genus are below species delineation guidelines. Available genome data support members of the genus largely being aerobic or microaerophilic, with subunits of both the high-affinity and low-affinity terminal oxidases encoded within the genus. Numerous glycoside hydrolases are encoded by species in the genus, supporting a likely saccharolytic lifestyle for members of the genus.
Fervidibacteraceae Fervidibacter sacchariTs seqco.de/i:32166
Genus Caldisaccharidevorator [Cal.di.sac.cha.ri.de.vo.ra'tor] L. masc. adj. caldus, hot; L. neut. n. saccharum, sugar; L. masc. n. devorator, devourer; N.L. masc. n. Caldisaccharidevorator, hot sugar devourer
Genomes belonging to the genus have been recovered from metagenomic sequence data from thermal environments from Malaysia and China. GC content range between 55-57%. ANI and AAI values among members of the genus are incongruent, although ANI values > 75% are observed among the two species in the genus. Based on available genome data, the genus likely comprise aerobic polysaccharide-degrading species, with the low-affinity terminal oxidase (CoxABC) conserved in the genus. Approximately 100 glycoside hydrolases (GHs) are encoded by genomes in the genus with > 40 GH families represented. No hydrogenases were predicted for genomes belonging to this genus.
Fervidibacteraceae Caldisaccharidevorator sinensisTs seqco.de/i:44082
Genus Thermosaccharophagus [Ther.mo.sac.cha.ro.pha'gus] Gr. fem. adj. therme, heat; Gr. neut. n. sakchar, sugar; Gr. masc. adj. suff. phagos, eater; N.L. masc. n. Thermosaccharophagus, eater of sugar in high temperatures
Genomes belonging to the genus have been recovered from metagenomic sequence data from thermal environments in the USA and China. GC content range between 47% and 53%. ANI and AAI values among species are inconsistent, although all ANI values between species are below suggested species guidelines. Based on available genome data, the genus is strictly anaerobic. Between 64 and 105 glycoside hydrolases (GHs) are encoded by genomes of the genus, with > 25 GH families represented. Group 1a and 4b hydrogenases are conserved within the genus, suggesting hydrogen and formate metabolism in the genus. The core of the methyl-branch of the Wood-Ljungdahl pathway is conserved in the genus.
Thermosaccharophagaceae Thermosaccharophagus gerlachensisTs seqco.de/i:44085
Species Fervidibacter sacchariTs [sac'cha.ri] N.L. gen. n. sacchari, of sugar
Hyperthermophilic, microaerophilic, facultatively anaerobic, and grows chemoheterotrophically on monosaccharides and polysaccharides. Cells are ovoid- to rod-shaped, Gram-stain negative, and are 0.9-1.3 µm in width and 1.6-3.6 µm in length. Grows between 65 and 87.5 °C and an optimum temperature of 80 °C, and a pH range of 6.5-8.6 with an optimum pH of 7.5. Grows at an optimum O2 concentration of 5-10%. Grows on D-arabinose, D-galactose, D-glucose, D-rhamnose, D-ribose, D-xylose, chondroitin sulfate, colloidal chitin, galactan, gellan gum, guar gum, karaya gum, locust bean gum, xantham gum, xyloglucan, β-glucan, glycogen, starch, AFEX-pretreated corn stover, miscanthus, sugarcane bagasse, acetate and casamino acids. Grows weakly on xyloglucan under fermentation conditions. The major fatty acids (> 10%) are C16:0, C18:0 and/or cyclo-C17:0, and iso-C16:0. The major respiratory quinones (> 10%) are MK-8 and MK-9. The isolate and genomes of the species have been recovered from geothermal springs in the Great Basin, Nevada, USA. GC content of genomes range between 51-52%. Subunits for both the high-affinity and low-affinity terminal oxidases are encoded in the genomes. Genomes also encode a Group 3d [NiFe] hydrogenase, which produces hydrogen as an electron sink for NAD+ regeneration.
Fervidibacter NCBI Assembly: GCA_030520105.1 Ts seqco.de/i:32165
Species Fervidibacter japonicus [ja.po.ni'cus] N.L. masc. adj. japonicus, of Japan, the country where this organism is from
The sole genome representative of this species was recovered from a metagenome from Hishikari Mine, Japan. The GC content if 59%. The genome encodes both the high- and low-affinity terminal oxidases.
Fervidibacter NCBI Assembly: GCA_002898575.1 Ts seqco.de/i:44080
Species Fervidibacter sinensis [si.nen'sis] N.L. masc. adj. sinensis, of China, the country where this organism is from
Genomes of this species were recovered from metagenomes from geothermal springs in Tengchong, China. GC content range between 50% and 52%. The a subunit of the high-affinity cytochrome bd ubiquinol oxidase (CydA) are encoded by the genomes of the species, but no low-affinity terminal oxidases are encoded.
Fervidibacter INSDC Nucleotide: JAVHTH000000000 Ts seqco.de/i:44079
Species Thermosaccharophagus gerlachensisTs [ger.lach.en'sis] N.L. masc. adj. gerlachensis, of Gerlach, the region where Great Boiling Spring is located in Nevada, where this organism is from
The sole genome representative for the species was recovered from a metagenome from Great Boiling Spring, Gerlach, Nevada, USA. GC content is 47%. No terminal oxidases are encoded by this genome, and the presence of the Wood-Ljungdahl pathway likely indicates this species is a strict anaerobe. Genes encoding a group 4d hydrogenase is present in multiple copies.
Thermosaccharophagus NCBI Assembly: GCA_041538025.1 Ts seqco.de/i:44087
Species Caldisaccharidevorator sinensisTs [si.nen'sis] N.L. masc. adj. sinensis, of China, the country where this organism is from
Genomes of this species were recovered from metagenomes from the geothermal spring Qiao Quan, in Tengchong, China. The GC content is approximately 56%. The low-affinity terminal oxidase CoxABC is encoded by genomes of the species.
Caldisaccharidevorator INSDC Nucleotide: JAVKTG000000000 Ts seqco.de/i:44083
Species Caldisaccharidevorator malaysiensis [ma.lay.si.en'sis] N.L. masc. adj. malaysiensis, of Malaysia, the country where this organism is from
The sole genome representative of this species was recovered from metagenomes of microbial mats in SKY hot spring, Malaysia. The GC content is 55%. Subunits of both the high- and low-affinity terminal oxidase are encoded by the genome.
Caldisaccharidevorator NCBI Assembly: GCA_025057575.1 Ts seqco.de/i:44084
Species Fervidibacter canadensis [ca.na.den'sis] N.L. masc. adj. canadensis, of Canada, the country where this organism is from
Genomes of this species were recovered from metagenomes from the geothermal Dewar Creek, British Columbia, Canada. GC content of genomes were approximately 57%. Subunits for both the high-affinity and low-affinity terminal oxidases are encoded in the genomes. The high-affinity respiratory H2-uptake [NiFe] group 1h hydrogenases are encoded by genomes of the species, likely fueling respiration during carbon starvation.
Fervidibacter NCBI Assembly: GCA_041446545.1 Ts seqco.de/i:44081
Species Thermosaccharophagus yellowstonensis [yel.low.ston.en'sis] N.L. masc. adj. yellowstonensis, of Yellowstone, USA, where this organism is from
The sole genome representative of the species was recovered from a metagenomes from Washburn Spring, Yellowstone National Park, Wyoming, USA. GC content is 51%. No terminal oxidases and the presence of the Wood-Ljundahl pathway indicate that this species is likely a strict anaerobe.
Thermosaccharophagus NCBI Assembly: GCA_041537945.1 Ts seqco.de/i:44088
Species Thermosaccharophagus tengchongensis [teng.chong.en'sis] N.L. masc. adj. tengchongensis, of Tengchong, Yunnan province, south-west China, where this organism is from
Genomes of this species were recovered from metagenomes from geothermal springs in Tengchong, China. GC content is approximately 52%. No terminal oxidases and the presence of the Wood-Ljundahl pathway indicate that this species is likely a strict anaerobe.
Thermosaccharophagus INSDC Nucleotide: JAVHTD000000000 Ts seqco.de/i:44086