-
DOI: 10.1016/j.ymben.2014.05.005
Yao K, Xu LQ, Wang FQ, Wei DZ
(2014).
Characterization and engineering of 3-ketosteroid- big up tri, open1-dehydrogenase and 3-ketosteroid-9alpha-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9alpha-hydroxy-4-androstene-3,17-dione through the catabolism of sterols.
-
DOI: 10.1038/srep21928
Xu LQ, Liu YJ, Yao K, Liu HH, Tao XY, Wang FQ, Wei DZ
(2016).
Unraveling and engineering the production of 23,24-bisnorcholenic steroids in sterol metabolism.
-
DOI: 10.1186/s12934-017-0705-x
Xiong LB, Liu HH, Xu LQ, Sun WJ, Wang FQ, Wei DZ
(2017).
Improving the production of 22-hydroxy-23,24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes.
-
DOI: 10.1128/AEM.02777-17
Liu HH, Xu LQ, Yao K, Xiong LB, Tao XY, Liu M, Wang FQ, Wei DZ
(2018).
Engineered 3-Ketosteroid 9alpha-Hydroxylases in Mycobacterium neoaurum: an Efficient Platform for Production of Steroid Drugs.
-
DOI: 10.1021/acs.jafc.8b02714
Liu M, Xiong LB, Tao X, Liu QH, Wang FQ, Wei DZ
(2018).
Integrated Transcriptome and Proteome Studies Reveal the Underlying Mechanisms for Sterol Catabolism and Steroid Production in Mycobacterium neoaurum.
-
DOI: 10.1021/acs.jafc.8b04777
Liu M, Xiong LB, Tao X, Liu QH, Wang FQ, Wei DZ
(2018).
Metabolic Adaptation of Mycobacterium neoaurum ATCC 25795 in the Catabolism of Sterols for Producing Important Steroid Intermediates.
-
DOI: 10.1186/s12934-020-01335-y
Xiong LB, Liu HH, Zhao M, Liu YJ, Song L, Xie ZY, Xu YX, Wang FQ, Wei DZ
(2020).
Enhancing the bioconversion of phytosterols to steroidal intermediates by the deficiency of kasB in the cell wall synthesis of Mycobacterium neoaurum.
-
DOI: 10.1016/j.nbt.2021.10.003
Liu K, Gao Y, Li ZH, Liu M, Wang FQ, Wei DZ
(2021).
CRISPR-Cas12a assisted precise genome editing of Mycolicibacterium neoaurum.
-
DOI: 10.1016/j.synbio.2022.05.006
Liu K, Lin GH, Liu K, Liu YJ, Tao XY, Gao B, Zhao M, Wei DZ, Wang FQ
(2022).
Multiplexed site-specific genome engineering in Mycolicibacterium neoaurum by Att/Int system.
-
DOI: 10.1186/s12934-021-01717-w
Yuan CY, Ma ZG, Zhang JX, Liu XC, Du GL, Sun JS, Shi JP, Zhang BG
(2021).
Production of 9,21-dihydroxy-20-methyl-pregna-4-en-3-one from phytosterols in Mycobacterium neoaurum by modifying multiple genes and improving the intracellular environment.
-
DOI: 10.1099/ijs.0.050567-0
Zhang DF, Chen X, Zhang XM, Zhi XY, Yao JC, Jiang Y, Xiong Z, Li WJ
(2013).
Mycobacterium sediminis sp. nov. and Mycobacterium arabiense sp. nov., two rapidly growing members of the genus Mycobacterium.
-
DOI: 10.1128/genomeA.00699-14
Phelippeau M, Robert C, Croce O, Raoult D, Drancourt M
(2014).
Draft Genome Sequence of Mycobacterium neoaurum Strain DSM 44074T.
-
DOI: 10.1007/s00284-023-03587-4
Jeong J, Ahn S, Truong TC, Kim JH, Weerawongwiwat V, Lee JS, Yoon JH, Sukhoom A, Kim W
(2024).
Description of Mycolicibacterium arenosum sp. nov. Isolated from Coastal Sand on the Yellow Sea Coast.
-
DOI: 10.3389/fmicb.2018.00067
Gupta RS, Lo B, Son J
(2018).
Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera.