Strain sc|0018013


Strain numbers

ATCC 4698 = BCRC 80739 = CCM 169 = CCUG 5858 = CECT 5053 = CGMCC 1.2299 = CIP A270 = DSM 20030 = HAMBI 1399 = HAMBI 26 = IEGM 391 = IFO 3333 = JCM 1464 = LMG 4050 = NBIMCC 1439 = NBIMCC 8934 = NBRC 3333 = NCCB 78001 = NCIB 9278 = NCIMB 9278 = NCTC 2665 = NRRL B-287 = VKM B-1314

StrainInfo: SI-ID 3577 T

Taxon
Micrococcus luteusT
Cultures (50)
LMG 4050 = ATCC 15307 = ATCC 4698 = CCM 169 = CCUG 5858 = CECT 51 = DSM 20030 = IAM 1056 = IFO 3333 = JCM 1464 = NCDO 947 = NCIB 10474 = NCIB 9278 = NCTC 2665 = CCRC 11034 = HUT 8101 = KCTC 1056 = KCTC 3063 = NCIMB 9278 = NCIMB 10474 = IMI 349015 = NCFB 947 = AS 1.2299 = LMD 78.1 = CECT 5053 = HAMBI 26 = HAMBI 1398 = VTT E-93442 = CIP A270 = IFO 1056 = NBRC 3333 = NCCB 78001 = CECT 5863 = HAMBI 1399 = BCRC 11034 = CCT 2283 = CCT 2688 = CCT 2692 = CCT 3024 = IAM 13591 = KACC 10488 = NBIMCC 1439 = VKM Ac-2230 = NCIM 2170 = CDBB 72 = VKM B-1314 = CNCTC 6599 = CGMCC 1.1848 = CGMCC 1.2299 = NRRL B-287
Other Designations (33)
RIMD 1303001 = USCC 1534 = USCC 555 = FIRDI 1034 = IEM M 15/65 = USCC 1230 = WDCM 00111 = CN 3475 = CNCTC M 15/65 = IEGM 391 = Fleming A = IEM 1056 = DSMZ 20030 = GIFU 8717 = IEM M15 = A. Fleming = AJ 1009 = CCTM La 2979 = PCM 525 = VKM B- 1813 = SMG 4050 = LMG 4050T QC 1/99 = NRIC 1094 = ML8 = LMG 4050T QC 1/03 = CCTM 2979 = IEM 65 = IMSNU 20354 = IMSNU 20332 = BUCSAV 393 = VKM 1314 = GISK 15307 = CCUG 5898
Sequences (30)
Associated Publications (43)
  • Andryuschenko SV, Perunova NB (2015). [ACID-BASE MODULATION OF LYSOZYME ACTIVITY IN MEDIUM FOR CULTIVATION OF ENTEROBACTERIA].
  • DOI: 10.1016/0005-2736(78)90235-3
    Schmitt M, Rittinghaus K, Scheurich P, Schwulera U, Dose K (1978). Immunological properties of membrane-bound adenosine triphosphatase: immunological identification of rutamycin-sensitive F0.F1ATPase from Micrococcus luteus ATCC 4698 established by crossed immunoelectrophoresis.
  • DOI: 10.1007/BF00777515
    Tomilin NV, Zherebtsov SV (1978). Effects of chloramphenicol on the postreplication repair and sister recombinational DNA exchanges in ultraviolet-irradiated Micrococcus luteus.
  • DOI: 10.1016/0167-8817(87)90005-8
    Tao K, Noda A, Yonei S (1987). The roles of different excision-repair mechanisms in the resistance of Micrococcus luteus to UV and chemical mutagens.
  • DOI: 10.1128/AAC.27.5.841
    Ruhr E, Sahl HG (1985). Mode of action of the peptide antibiotic nisin and influence on the membrane potential of whole cells and on cytoplasmic and artificial membrane vesicles.
  • DOI: 10.1093/oxfordjournals.jbchem.a135248
    Kawamura T, Ichihara N, Sugiyama S, Yokota H, Ishimoto N, Ito E (1985). Biosynthesis of UDP-N-acetyl-D-glucosaminuronic acid and UDP-N-acetyl-D-mannosaminuronic acid in Micrococcus luteus.
  • DOI: 10.1128/jb.108.1.353-358.1971
    Morrison SJ, Tornabene TG, Kloos WE (1971). Neutral lipids in the study of relationships of members of the family micrococcaceae.
  • DOI: 10.1021/bi00545a026
    Meganathan R, Folger T, Bentley R (1980). Conversion of o-succinylbenzoate to dihydroxynaphthoate by extracts of Micrococcus luteus.
  • DOI: 10.1016/0014-5793(94)01271-7
    Gruber G, Engelbrecht S, Junge W, Dose K, Nawroth T (1994). Purification and characterization of the inhibitory subunit (delta) of the ATP-synthase from Micrococcus luteus.
  • DOI: 10.1128/AEM.00723-06
    Schmitz S, Hoffmann A, Szekat C, Rudd B, Bierbaum G (2006). The lantibiotic mersacidin is an autoinducing peptide.
  • DOI: 10.1128/AEM.02312-09
    Beller HR, Goh EB, Keasling JD (2009). Genes involved in long-chain alkene biosynthesis in Micrococcus luteus.
  • DOI: 10.1089/fpd.2010.0578
    Ceotto H, Brede D, Salehian Z, Nascimento Jdos S, Fagundes PC, Nes IF, Bastos Mdo C (2010). Aureocins 4185, bacteriocins produced by Staphylococcus aureus 4185: potential application in food preservation.
  • DOI: 10.1016/j.mcp.2011.09.003
    Kooken JM, Fox KF, Fox A (2011). Characterization of Micrococcus strains isolated from indoor air.
  • Shi Y, Zhou CH, Zhou XD, Geng RX, Ji QG (2011). [Synthesis and antimicrobial evaluation of coumarin-based benzotriazoles and their synergistic effects with chloromycin and fluconazole].
  • DOI: 10.5713/ajas.14.0439
    Li D, Ni K, Pang H, Wang Y, Cai Y, Jin Q (2015). Identification and antimicrobial activity detection of lactic Acid bacteria isolated from corn stover silage.
  • DOI: 10.1007/s10544-015-0025-z
    Aly Saad Aly M, Gauthier M, Yeow J (2016). On-chip cell lysis by antibacterial non-leaching reusable quaternary ammonium monolithic column.
  • DOI: 10.1007/s12010-018-2886-0
    Ben Braiek O, Smaoui S, Fleury Y, Morandi S, Hani K, Ghrairi T (2018). Bio-guided Purification and Mass Spectrometry Characterisation Exploring the Lysozyme-like Protein from Enterococcus lactis Q1, an Unusual Marine Bacterial Strain.
  • DOI: 10.3168/jds.2018-15414
    Rahmdel S, Shekarforoush SS, Hosseinzadeh S, Torriani S, Gatto V (2019). Antimicrobial spectrum activity of bacteriocinogenic Staphylococcus strains isolated from goat and sheep milk.
  • DOI: 10.18502/ijm.v13i2.5983
    Kassem MA, Saafan AE, Bayomy F, El-Gendy AO (2021). Exploring clinically isolated Staphylococcus sp. bacteriocins revealed the production of amonabactin, micrococcin, and alpha-circulocin.
  • DOI: 10.1007/BF00429631
    Rupprecht M, Schleifer KH (1977). Comparative immunological study of catalases in the genus Micrococcus.
  • DOI: 10.1128/aem.63.8.3176-3181.1997
    Jaspers E, Overmann J (1997). Separation of bacterial cells by isoelectric focusing, a new method for analysis of complex microbial communities.
  • Monodane T, Uesugi Y, Tokunaga M (1991). Cell separation system studied by mixed culture of single wild strain with tetrads-forming mutant strain of Micrococcus luteus.
  • DOI: 10.1111/j.1348-0421.1989.tb01510.x
    Monodane T, Kusamichi M, Tokunaga M, Torii M (1989). Cell surface of Micrococcus luteus: chemical treatment of the cells and teichuronic acids on the surface.
  • Matsuda M, Togo M, Kagawa S, Moore JE (2001). PCR cloning of the resuscitation-promoting factor (Rpf) gene from Micrococcus luteus, sequencing and expression in Escherichia coli.
  • DOI: 10.1002/jobm.200390036
    Murayama O, Matsuda M, Moore JE (2003). Studies on the genomic heterogeneity of Micrococcus luteus strains by macro-restriction analysis using pulsed-field gel electrophoresis.
  • DOI: 10.1128/AEM.01490-08
    Schulte C, Arenskotter M, Berekaa MM, Arenskotter Q, Priefert H, Steinbuchel A (2008). Possible involvement of an extracellular superoxide dismutase (SodA) as a radical scavenger in poly(cis-1,4-isoprene) degradation.
  • DOI: 10.1128/JB.01254-09
    Young M, Artsatbanov V, Beller HR, Chandra G, Chater KF, Dover LG, Goh EB, Kahan T, Kaprelyants AS, Kyrpides N, Lapidus A, Lowry SR, Lykidis A, Mahillon J, Markowitz V, Mavromatis K, Mukamolova GV, Oren A, Rokem JS, Smith MC, Young DI, Greenblatt CL (2009). Genome sequence of the Fleming strain of Micrococcus luteus, a simple free-living actinobacterium.
  • DOI: 10.1128/JB.00724-10
    Netzer R, Stafsnes MH, Andreassen T, Goksoyr A, Bruheim P, Brautaset T (2010). Biosynthetic pathway for gamma-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases.
  • DOI: 10.1002/bit.23212
    Rokem JS, Vongsangnak W, Nielsen J (2011). Comparative metabolic capabilities for Micrococcus luteus NCTC 2665, the "Fleming" strain, and actinobacteria.
  • Bukharin OV, Sgibnev AV (2013). [Effect of metabolites of H2O2-producing lactobacilli on functional activity of lysozyme].
  • DOI: 10.1099/ijs.0.063339-0
    Prakash O, Nimonkar Y, Munot H, Sharma A, Vemuluri VR, Chavadar MS, Shouche YS (2014). Description of Micrococcus aloeverae sp. nov., an endophytic actinobacterium isolated from Aloe vera.
  • DOI: 10.1007/s00253-015-6392-9
    Jeon EY, Baek AH, Bornscheuer UT, Park JB (2015). Enzyme fusion for whole-cell biotransformation of long-chain sec-alcohols into esters.
  • DOI: 10.4014/jmb.1501.01001
    Lee BH, Lee SB, Kim HS, Jeong KJ, Park JY, Park KM, Lee JW (2015). Whole Cell Bioconversion of Ricinoleic Acid to 12-Ketooleic Acid by Recombinant Corynebacterium glutamicum-Based Biocatalyst.
  • DOI: 10.1128/JB.00206-17
    Mali S, Mitchell M, Havis S, Bodunrin A, Rangel J, Olson G, Widger WR, Bark SJ (2017). A Proteomic Signature of Dormancy in the Actinobacterium Micrococcus luteus.
  • DOI: 10.1186/s40364-017-0101-z
    Sidhoo S, Rosales JL, Lee KY (2017). Integration of a bacterial gene sequence into a chronic eosinophilic leukemia patient's genome as part of a fusion gene linker.
  • DOI: 10.1093/femsle/fnz054
    Havis S, Rangel J, Mali S, Bodunrin A, Housammy Z, Zimmerer R, Murphy J, Widger WR, Bark SJ (2019). A color-based competition assay for studying bacterial stress responses in Micrococcus luteus.
  • DOI: 10.4102/ojvr.v86i1.1724
    Musonye HA, Njeru EM, Hassanali A, Langata LM, Mijele D, Kaitho T, King'ori E, Nonoh J (2019). 16S rRNA gene profiling of bacterial communities mediating production of tsetse attractive phenols in mammalian urine.
  • DOI: 10.1128/JB.00497-19
    Havis S, Bodunrin A, Rangel J, Zimmerer R, Murphy J, Storey JD, Duong TD, Mistretta B, Gunaratne P, Widger WR, Bark SJ (2019). A Universal Stress Protein That Controls Bacterial Stress Survival in Micrococcus luteus.
  • DOI: 10.1099/ijsem.0.005467
    Lopez Marin MA, Suman J, Jani K, Ulbrich P, Cajthaml T, Pajer P, Wolf J, Neumann-Schaal M, Strejcek M, Uhlik O (2022). Pedomonas mirosovicensis gen. nov., sp. nov., a bacterium isolated from soil with the aid of Micrococcus luteus culture supernatant containing resuscitation-promoting factor.
  • DOI: 10.3390/life12111749
    Lee AY, Chen CH, Liou JS, Lin YC, Hamada M, Wang YT, Peng LL, Chang SC, Chen CC, Lin CF, Huang L, Huang CH (2022). Micrococcus porci sp. nov., Isolated from Feces of Black Pig (Sus scrofa).
  • DOI: 10.4014/jmb.1203.03068
    Jang EK, Ullah I, Lim JH, Lee IJ, Kim JG, Shin JH (2012). Physiological and molecular characterization of a newly identified entomopathogenic bacteria, Photorhabdus temperata M1021.
  • DOI: 10.3389/fmicb.2017.00068
    Zothanpuia, Passari AK, Chandra P, Leo VV, Mishra VK, Kumar B, Singh BP (2017). Production of Potent Antimicrobial Compounds from Streptomyces cyaneofuscatus Associated with Fresh Water Sediment.
  • DOI: 10.1099/ijs.0.013235-0
    Zhang JY, Liu XY, Liu SJ (2009). Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil.
Outside links and data sources
Retrieved 19 days ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:18013
Local history
  • Registered 7 months ago
  • Last modified 19 days ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license