-
DOI: 10.1111/j.1399-302x.1991.tb00443.x
Liu T, Gibbons RJ, Hay DI, Skobe Z
(1991).
Binding of Actinomyces viscosus to collagen: association with the type 1 fimbrial adhesin.
-
DOI: 10.1128/iai.56.2.439-445.1988
Gibbons RJ, Hay DI
(1988).
Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces.
-
DOI: 10.1128/iai.10.6.1280-1291.1974
Miller CH
(1974).
Degradation of sucrose by whole cells and plaque of Actinomyces naeslundii.
-
DOI: 10.1128/iai.46.2.453-458.1984
Cisar JO, David VA, Curl SH, Vatter AE
(1984).
Exclusive presence of lactose-sensitive fimbriae on a typical strain (WVU45) of Actinomyces naeslundii.
-
DOI: 10.1128/iai.37.3.1200-1208.1982
Kolenbrander PE
(1982).
Isolation and characterization of coaggregation-defective mutants of Actinomyces viscosus, Actinomyces naeslundii, and Streptococcus sanguis.
-
DOI: 10.1128/iai.31.1.261-266.1981
Qureshi JV, Gibbons RJ
(1981).
Differences in the adsorptive behavior of human strains of Actinomyces viscosus and Actinomyces naeslundii to saliva-treated hydroxyapatite surfaces.
-
DOI: 10.1128/iai.61.5.2011-2014.1993
Nesbitt WE, Fukushima H, Leung KP, Clark WB
(1993).
Coaggregation of Prevotella intermedia with oral Actinomyces species.
-
DOI: 10.1177/00220345830620100501
Saunders JM, Miller CH
(1983).
Neuraminidase-activated attachment of Actinomyces naeslundii ATCC 12104 to human buccal epithelial cells.
-
DOI: 10.1128/iai.29.3.981-989.1980
Saunders JM, Miller CH
(1980).
Attachment of Actinomyces naeslundii to human buccal epithelial cells.
-
DOI: 10.1111/j.1399-302x.1994.tb00208.x
Loo CY, Willcox MD, Knox KW
(1994).
Surface-associated properties of Actinomyces strains and their potential relation to pathogenesis.
-
DOI: 10.1016/0003-9969(93)90191-n
Hawkins BW, Cannon RD, Jenkinson HF
(1993).
Interactions of Actinomyces naeslundii strains T14V and ATCC 12104 with saliva, collagen and fibrinogen.
-
DOI: 10.1006/bmme.1996.0043
Kiyama M, Hiratsuka K, Saito S, Shiroza T, Takiguchi H, Abiko Y
(1996).
Detection of Actinomyces species using nonradioactive riboprobes coupled with polymerase chain reaction.
-
DOI: 10.1128/iai.64.10.4204-4210.1996
McNab R, Holmes AR, Clarke JM, Tannock GW, Jenkinson HF
(1996).
Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin.
-
DOI: 10.1177/00220345990780060701
Bratt P, Boren, Boren T, Str omberg N
(1999).
Secretory immunoglobulin A heavy chain presents Galbeta1-3GalNAc binding structures for Actinomyces naeslundii genospecies 1.
-
DOI: 10.1016/j.micres.2005.11.002
Liu Y, Hu T, Zhang J, Zhou X
(2006).
Characterization of the Actinomyces naeslundii ureolysis and its role in bacterial aciduricity and capacity to modulate pH homeostasis.
-
DOI: 10.1111/j.1574-6968.2007.00959.x
Liu Y, Hu T, Jiang D, Zhang J, Zhou X
(2007).
Regulation of urease gene of Actinomyces naeslundii in biofilms in response to environmental factors.
-
DOI: 10.1111/j.1399-302X.2008.00430.x
Liy Y, Dan J, Tao H, Xuedong Z
(2008).
Regulation of urease expression of Actinomyces naeslundii in biofilms in response to pH and carbohydrate.
-
Li MY, Guo Q, Zhou XD, Xiong P, Jia XM, Xiao XR, Li W, Xiao LY
(2009).
[Initial study on the discrimination of oral common Actinomycetes with metabonomics method].
-
DOI: 10.1111/j.1741-2358.2011.00595.x
Kitada K, Oho T
(2011).
Effect of saliva viscosity on the co-aggregation between oral streptococci and Actinomyces naeslundii.
-
DOI: 10.1177/0022034515589284
Howlin RP, Fabbri S, Offin DG, Symonds N, Kiang KS, Knee RJ, Yoganantham DC, Webb JS, Birkin PR, Leighton TG, Stoodley P
(2015).
Removal of Dental Biofilms with an Ultrasonically Activated Water Stream.
-
DOI: 10.1155/2022/1549774
Panariello BHD, Mody DP, Eckert GJ, Witek L, Coelho PG, Duarte S
(2022).
Low-Temperature Plasma Short Exposure to Decontaminate Peri-Implantitis-Related Multispecies Biofilms on Titanium Surfaces In Vitro.
-
DOI: 10.1159/000528731
Lennon AM, Brune L, Techert S, Buchalla W
(2022).
Fluorescence Spectroscopy Shows Porphyrins Produced by Cultured Oral Bacteria Differ Depending on Composition of Growth Media.