Strain sc|0019475


This strain is associated as type material for multiple names:

StrainInfo: SI-ID 10383 T

Taxon
Acetivibrio thermocellus (not Clostridium thermocellum)
Cultures (15)
LMG 10435 = ATCC 27405 = NCIMB 10682 = NCIB 10682 = JCM 9322 = IAM13660 = CECT 593 = CCRC 14411 = VTT E-81137 = KCTC 1672 = JCM 12338 = BCRC 14411 = NRRL B-4536 = NBRC 103400 = DSM 1237
Other Designations (4)
VPI 7372 = 157 = DSMZ 1237 = CCTM La 2956
Sequences (11)
Associated Publications (81)
  • DOI: 10.1093/glycob/cwq106
    Park BH, Karpinets TV, Syed MH, Leuze MR, Uberbacher EC (2010). CAZymes Analysis Toolkit (CAT): web service for searching and analyzing carbohydrate-active enzymes in a newly sequenced organism using CAZy database.
  • DOI: 10.1186/s13068-018-1151-7
    Chang JJ, Anandharaj M, Ho CY, Tsuge K, Tsai TY, Ke HM, Lin YJ, Ha Tran MD, Li WH, Huang CC (2018). Biomimetic strategy for constructing Clostridium thermocellum cellulosomal operons in Bacillus subtilis.
  • DOI: 10.1371/journal.pone.0247135
    Ha-Tran DM, Lai RY, Nguyen TTM, Huang E, Lo SC, Huang CC (2021). Construction of engineered RuBisCO Kluyveromyces marxianus for a dual microbial bioethanol production system.
  • DOI: 10.1016/0378-1097(92)90022-g
    Poole DM, Morag E, Lamed R, Bayer EA, Hazlewood GP, Gilbert HJ (1992). Identification of the cellulose-binding domain of the cellulosome subunit S1 from Clostridium thermocellum YS.
  • DOI: 10.1111/j.1432-1033.1991.tb15793.x
    Gerwig GJ, Kamerling JP, Vliegenthart JF, Morag E, Lamed R, Bayer EA (1991). Primary structure of O-linked carbohydrate chains in the cellulosome of different Clostridium thermocellum strains.
  • DOI: 10.1016/0005-2736(82)90487-4
    Herrero AA, Gomez RF, Roberts MF (1982). Ethanol-induced changes in the membrane lipid composition of Clostridium thermocellum.
  • DOI: 10.1128/aem.40.3.571-577.1980
    Herrero AA, Gomez RF (1980). Development of ethanol tolerance in Clostridium thermocellum: effect of growth temperature.
  • DOI: 10.1007/BF00902740
    Wang WK, Kruus K, Wu JH (1994). Cloning and expression of the Clostridium thermocellum celS gene in Escherichia coli.
  • DOI: 10.1128/jb.175.5.1293-1302.1993
    Wang WK, Kruus K, Wu JH (1993). Cloning and DNA sequence of the gene coding for Clostridium thermocellum cellulase Ss (CelS), a major cellulosome component.
  • DOI: 10.1007/s002530050659
    Klapatch TR, Demain AL, Lynd LR (1996). Restriction endonuclease activity in Clostridium thermocellum and Clostridium thermosaccharolyticum.
  • DOI: 10.1038/sj.jim.7000082
    Ozkan M, Desai SG, Zhang Y, Stevenson DM, Beane J, White EA, Guerinot ML, Lynd LR (2001). Characterization of 13 newly isolated strains of anaerobic, cellulolytic, thermophilic bacteria.
  • DOI: 10.1021/ac020271n
    Zhang Y, Lynd LR (2003). Quantification of cell and cellulase mass concentrations during anaerobic cellulose fermentation: development of an enzyme-linked immunosorbent assay-based method with application to Clostridium thermocellum batch cultures.
  • DOI: 10.1128/AEM.70.2.883-890.2004
    Tyurin MV, Desai SG, Lynd LR (2004). Electrotransformation of Clostridium thermocellum.
  • DOI: 10.1128/AEM.70.3.1563-1569.2004
    Zhang YH, Lynd LR (2004). Kinetics and relative importance of phosphorolytic and hydrolytic cleavage of cellodextrins and cellobiose in cell extracts of Clostridium thermocellum.
  • DOI: 10.1007/s00253-004-1767-3
    Weimer PJ, Koegel RG, Lorenz LF, Frihart CR, Kenealy WR (2004). Wood adhesives prepared from lucerne fiber fermentation residues of Ruminococcus albus and Clostridium thermocellum.
  • DOI: 10.1128/AEM.71.8.4672-4678.2005
    Stevenson DM, Weimer PJ (2005). Expression of 17 genes in Clostridium thermocellum ATCC 27405 during fermentation of cellulose or cellobiose in continuous culture.
  • DOI: 10.1128/AEM.71.12.8069-8076.2005
    Tyurin MV, Sullivan CR, Lynd LR (2005). Role of spontaneous current oscillations during high-efficiency electrotransformation of thermophilic anaerobes.
  • DOI: 10.1128/aem.58.2.734-736.1992
    Sato K, Goto S, Yonemura S, Sekine K, Okuma E, Takagi Y, Hon-Nami K, Saiki T (1992). Effect of Yeast Extract and Vitamin B(12) on Ethanol Production from Cellulose by Clostridium thermocellum I-1-B.
  • DOI: 10.1111/j.1365-2958.2006.05182.x
    Kang S, Barak Y, Lamed R, Bayer EA, Morrison M (2006). The functional repertoire of prokaryote cellulosomes includes the serpin superfamily of serine proteinase inhibitors.
  • DOI: 10.1007/s00253-007-1053-2
    Mizanur RM, Pohl NL (2007). Cloning and characterization of a heat-stable CMP-N-acylneuraminic acid synthetase from Clostridium thermocellum.
  • DOI: 10.1128/JB.00097-08
    Zverlov VV, Klupp M, Krauss J, Schwarz WH (2008). Mutations in the scaffoldin gene, cipA, of Clostridium thermocellum with impaired cellulosome formation and cellulose hydrolysis: insertions of a new transposable element, IS1447, and implications for cellulase synergism on crystalline cellulose.
  • DOI: 10.1007/s12010-007-9087-6
    Brown SD, Raman B, McKeown CK, Kale SP, He Z, Mielenz JR (2007). Construction and evaluation of a Clostridium thermocellum ATCC 27405 whole-genome oligonucleotide microarray.
  • DOI: 10.1002/bit.260250418
    Kundu S, Ghose TK, Mukhopadhyay SN (1983). Bioconversion of cellulose into ethanol by Clostridium thermocellum--product inhibition.
  • DOI: 10.1002/bit.22092
    Magnusson L, Cicek N, Sparling R, Levin D (2009). Continuous hydrogen production during fermentation of alpha-cellulose by the thermophillic bacterium Clostridium thermocellum.
  • DOI: 10.1007/s00253-008-1763-0
    Islam R, Cicek N, Sparling R, Levin D (2008). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405.
  • DOI: 10.1371/journal.pone.0005271
    Raman B, Pan C, Hurst GB, Rodriguez M Jr, McKeown CK, Lankford PK, Samatova NF, Mielenz JR (2009). Impact of pretreated Switchgrass and biomass carbohydrates on Clostridium thermocellum ATCC 27405 cellulosome composition: a quantitative proteomic analysis.
  • DOI: 10.1016/j.jbiotec.2009.01.022
    Rydzak T, Levin DB, Cicek N, Sparling R (2009). Growth phase-dependant enzyme profile of pyruvate catabolism and end-product formation in Clostridium thermocellum ATCC 27405.
  • DOI: 10.1016/j.biortech.2009.06.084
    He Q, Lokken PM, Chen S, Zhou J (2009). Characterization of the impact of acetate and lactate on ethanolic fermentation by Thermoanaerobacter ethanolicus.
  • DOI: 10.1186/1752-0509-4-31
    Roberts SB, Gowen CM, Brooks JP, Fong SS (2010). Genome-scale metabolic analysis of Clostridium thermocellum for bioethanol production.
  • DOI: 10.1016/j.biochi.2010.07.013
    Nakai H, Hachem MA, Petersen BO, Westphal Y, Mannerstedt K, Baumann MJ, Dilokpimol A, Schols HA, Duus JO, Svensson B (2010). Efficient chemoenzymatic oligosaccharide synthesis by reverse phosphorolysis using cellobiose phosphorylase and cellodextrin phosphorylase from Clostridium thermocellum.
  • DOI: 10.1128/JB.00322-11
    Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, Tapia R, Han C, Lapidus A, Lucas S, Cheng JF, Pitluck S, Woyke T, Ivanova N, Mikhailova N, Land M, Hauser L, Argyros DA, Goodwin L, Hogsett D, Caiazza N (2011). Complete genome sequence of the cellulolytic thermophile Clostridium thermocellum DSM1313.
  • DOI: 10.1007/s10532-011-9486-9
    Tachaapaikoon C, Kosugi A, Pason P, Waeonukul R, Ratanakhanokchai K, Kyu KL, Arai T, Murata Y, Mori Y (2011). Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain.
  • DOI: 10.1186/1471-2180-11-134
    Raman B, McKeown CK, Rodriguez M Jr, Brown SD, Mielenz JR (2011). Transcriptomic analysis of Clostridium thermocellum ATCC 27405 cellulose fermentation.
  • DOI: 10.1007/s00253-011-3511-0
    Rydzak T, Levin DB, Cicek N, Sparling R (2011). End-product induced metabolic shifts in Clostridium thermocellum ATCC 27405.
  • DOI: 10.1007/s00253-011-3492-z
    Shao X, Raman B, Zhu M, Mielenz JR, Brown SD, Guss AM, Lynd LR (2011). Mutant selection and phenotypic and genetic characterization of ethanol-tolerant strains of Clostridium thermocellum.
  • DOI: 10.1016/j.biortech.2011.09.128
    Ellis LD, Holwerda EK, Hogsett D, Rogers S, Shao X, Tschaplinski T, Thorne P, Lynd LR (2011). Closing the carbon balance for fermentation by Clostridium thermocellum (ATCC 27405).
  • DOI: 10.1007/s10295-012-1091-3
    Holwerda EK, Hirst KD, Lynd LR (2012). A defined growth medium with very low background carbon for culturing Clostridium thermocellum.
  • DOI: 10.1271/bbb.110807
    Kubota T, Izumi Y (2012). Detection and characterization of a thermophilic biotin biosynthetic enzyme, 7-keto-8-aminopelargonic acid synthase, from various thermophiles.
  • DOI: 10.1186/1471-2164-13-336
    Yang S, Giannone RJ, Dice L, Yang ZK, Engle NL, Tschaplinski TJ, Hettich RL, Brown SD (2012). Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress.
  • DOI: 10.1186/1471-2180-12-180
    Mearls EB, Izquierdo JA, Lynd LR (2012). Formation and characterization of non-growth states in Clostridium thermocellum: spores and L-forms.
  • DOI: 10.1007/s12088-008-0036-z
    Carere CR, Kalia V, Sparling R, Cicek N, Levin DB (2008). Pyruvate catabolism and hydrogen synthesis pathway genes of Clostridium thermocellum ATCC 27405.
  • DOI: 10.1021/jf302337w
    Cheng F, Sheng J, Dong R, Men Y, Gan L, Shen L (2012). Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic Acid production from wheat straw.
  • DOI: 10.1139/cjm-2012-0412
    Burton E, Martin VJ (2012). Proteomic analysis of Clostridium thermocellum ATCC 27405 reveals the upregulation of an alternative transhydrogenase-malate pathway and nitrogen assimilation in cells grown on cellulose.
  • DOI: 10.1111/jam.12112
    Lv W, Yu Z (2013). Isolation and characterization of two thermophilic cellulolytic strains of Clostridium thermocellum from a compost sample.
  • DOI: 10.1016/j.biortech.2012.12.006
    Kridelbaugh DM, Nelson J, Engle NL, Tschaplinski TJ, Graham DE (2012). Nitrogen and sulfur requirements for Clostridium thermocellum and Caldicellulosiruptor bescii on cellulosic substrates in minimal nutrient media.
  • DOI: 10.1371/journal.pone.0073575
    Ahmed S, Luis AS, Bras JL, Ghosh A, Gautam S, Gupta MN, Fontes CM, Goyal A (2013). A novel alpha-L-arabinofuranosidase of family 43 glycoside hydrolase (Ct43Araf) from Clostridium thermocellum.
  • DOI: 10.1021/jf403111g
    Ghosh A, Luis AS, Bras JL, Fontes CM, Goyal A (2013). Thermostable recombinant beta-(1-->4)-mannanase from C. thermocellum: biochemical characterization and manno-oligosaccharides production.
  • DOI: 10.1186/1754-6834-6-179
    Wilson CM, Rodriguez M Jr, Johnson CM, Martin SL, Chu TM, Wolfinger RD, Hauser LJ, Land ML, Klingeman DM, Syed MH, Ragauskas AJ, Tschaplinski TJ, Mielenz JR, Brown SD (2013). Global transcriptome analysis of Clostridium thermocellum ATCC 27405 during growth on dilute acid pretreated Populus and switchgrass.
  • DOI: 10.1016/j.biortech.2013.12.051
    Reed PT, Izquierdo JA, Lynd LR (2013). Cellulose fermentation by Clostridium thermocellum and a mixed consortium in an automated repetitive batch reactor.
  • DOI: 10.1007/s00253-013-5500-y
    Carere CR, Rydzak T, Cicek N, Levin DB, Sparling R (2014). Role of transcription and enzyme activities in redistribution of carbon and electron flux in response to N(2) and H(2) sparging of open-batch cultures of Clostridium thermocellum ATCC 27405.
  • DOI: 10.1107/S2053230X14006402
    Goyal A, Ahmed S, Fontes CM, Najmudin S (2014). Crystallization and preliminary X-ray crystallographic analysis of a novel alpha-L-arabinofuranosidase (CtGH43) from Clostridium thermocellum ATCC 27405.
  • DOI: 10.1186/1754-6834-7-75
    Yee KL, Rodriguez M Jr, Thompson OA, Fu C, Wang ZY, Davison BH, Mielenz JR (2014). Consolidated bioprocessing of transgenic switchgrass by an engineered and evolved Clostridium thermocellum strain.
  • DOI: 10.1128/AEM.03360-14
    Taillefer M, Rydzak T, Levin DB, Oresnik IJ, Sparling R (2015). Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
  • DOI: 10.1016/j.biortech.2015.08.111
    Tian QQ, Liang L, Zhu MJ (2015). Enhanced biohydrogen production from sugarcane bagasse by Clostridium thermocellum supplemented with CaCO3.
  • DOI: 10.1186/s13068-016-0445-x
    Dumitrache A, Akinosho H, Rodriguez M Jr, Meng X, Yoo CG, Natzke J, Engle NL, Sykes RW, Tschaplinski TJ, Muchero W, Ragauskas AJ, Davison BH, Brown SD (2016). Consolidated bioprocessing of Populus using Clostridium (Ruminiclostridium) thermocellum: a case study on the impact of lignin composition and structure.
  • DOI: 10.1128/AEM.02751-16
    Wilson CM, Klingeman DM, Schlachter C, Syed MH, Wu CW, Guss AM, Brown SD (2017). LacI Transcriptional Regulatory Networks in Clostridium thermocellum DSM1313.
  • DOI: 10.1021/jacs.7b01283
    Grove TL, Himes PM, Hwang S, Yumerefendi H, Bonanno JB, Kuhlman B, Almo SC, Bowers AA (2017). Structural Insights into Thioether Bond Formation in the Biosynthesis of Sactipeptides.
  • DOI: 10.1016/j.abb.2018.01.015
    Rajulapati V, Sharma K, Dhillon A, Goyal A (2018). SAXS and homology modelling based structure characterization of pectin methylesterase a family 8 carbohydrate esterase from Clostridium thermocellum ATCC 27405.
  • DOI: 10.1016/j.biortech.2018.01.042
    Chi X, Li J, Wang X, Zhang Y, Antwi P (2018). Hyper-production of butyric acid from delignified rice straw by a novel consolidated bioprocess.
  • DOI: 10.1007/s12010-018-2864-6
    Shinoda S, Kurosaki M, Kokuzawa T, Hirano K, Takano H, Ueda K, Haruki M, Hirano N (2018). Comparative Biochemical Analysis of Cellulosomes Isolated from Clostridium clariflavum DSM 19732 and Clostridium thermocellum ATCC 27405 Grown on Plant Biomass.
  • DOI: 10.1007/s10295-019-02218-x
    Riley LA, Ji L, Schmitz RJ, Westpheling J, Guss AM (2019). Rational development of transformation in Clostridium thermocellum ATCC 27405 via complete methylome analysis and evasion of native restriction-modification systems.
  • DOI: 10.1016/j.dib.2019.104274
    Nakazono-Nagaoka E, Fujikawa T, Shikata A, Tachaapaikoon C, Waeonukul R, Pason P, Ratanakhanokchai K, Kosugi A (2019). Draft genome sequence data of Clostridium thermocellum PAL5 possessing high cellulose-degradation ability.
  • DOI: 10.1016/j.carres.2019.107782
    Kumar K, Singal S, Goyal A (2019). Role of carbohydrate binding module (CBM3c) of GH9 beta-1,4 endoglucanase (Cel9W) from Hungateiclostridium thermocellum ATCC 27405 in catalysis.
  • DOI: 10.1016/j.jmgm.2020.107808
    Kumar K, Singh S, Sharma K, Goyal A (2020). Computational modeling and small-angle X-ray scattering based structure analysis and identifying ligand cleavage mechanism by processive endocellulase of family 9 glycoside hydrolase (HtGH9) from Hungateiclostridium thermocellum ATCC 27405.
  • DOI: 10.1080/07391102.2021.1911858
    Ahmed J, Kumar K, Sharma K, Fontes CMGA, Goyal A (2021). Computational and SAXS-based structure insights of pectin acetyl esterase (CtPae12B) of family 12 carbohydrate esterase from Clostridium thermocellum ATCC 27405.
  • DOI: 10.3390/microorganisms9071445
    Ha-Tran DM, Nguyen TTM, Lo SC, Huang CC (2021). Utilization of Monosaccharides by Hungateiclostridium thermocellum ATCC 27405 through Adaptive Evolution.
  • DOI: 10.1016/j.ijbiomac.2023.125164
    Mandal A, Thakur A, Goyal A (2023). Role of carbohydrate binding modules, CBM3A and CBM3B in stability and catalysis by a beta-1,4 endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus ATCC 27405.
  • DOI: 10.1186/s13068-023-02362-8
    Daley SR, Gallanosa PM, Sparling R (2023). Kinetic characterization of annotated glycolytic enzymes present in cellulose-fermenting Clostridium thermocellum suggests different metabolic roles.
  • DOI: 10.1139/cjm-2024-0004
    Daley SR, Kirby S, Sparling R (2024). Adaptive evolution of Clostridium thermocellum ATCC 27405 on alternate carbon sources leads to altered fermentation profiles.
  • DOI: 10.1016/j.ijbiomac.2024.133212
    Mandal A, Ahmed J, Singh S, Goyal A (2024). Structure elucidation of a multi-modular recombinant endoglucanase, AtGH9C-CBM3A-CBM3B from Acetivibrio thermocellus ATCC 27405 and its substrate binding analysis.
  • DOI: 10.1016/s0769-2609(85)80038-7
    Petre D, Beguin P, Millet J, Aubert JP (1985). Heterologous hybridization of bacterial DNA to the endoglucanases A and B structural genes celA and celB of Clostridium thermocellum.
  • DOI: 10.1099/00221287-137-10-2299
    Ozaki K, Sumitomo N, Ito S (1991). Molecular cloning and nucleotide sequence of the gene encoding an endo-1,4-beta-glucanase from Bacillus sp. KSM-330.
  • DOI: 10.1016/0378-1119(88)90416-7
    Faure E, Bagnara C, Belaich A, Belaich JP (1988). Cloning and expression of two cellulase genes of Clostridium cellulolyticum in Escherichia coli.
  • DOI: 10.1099/00221287-133-5-1297
    Romaniec MP, Clarke NG, Hazlewood GP (1987). Molecular cloning of Clostridium thermocellum DNA and the expression of further novel endo-beta-1,4-glucanase genes in Escherichia coli.
  • DOI: 10.5458/jag.jag.JAG-2018_0011
    Yano S, Hori Y, Kijima T, Konno H, Suyotha W, Takagi K, Wakayama M (2019). Construction of Cellulose Binding Domain Fusion FMN-Dependent NADH-Azoreductase and Glucose 1-Dehydrogenase for the Development of Flow Injection Analysis with Fusion Enzymes Immobilized on Cellulose.
  • DOI: 10.1016/j.biortech.2015.03.061
    Kiyoshi K, Furukawa M, Seyama T, Kadokura T, Nakazato A, Nakayama S (2015). Butanol production from alkali-pretreated rice straw by co-culture of Clostridium thermocellum and Clostridium saccharoperbutylacetonicum.
  • DOI: 10.1099/mic.0.26153-0
    Fuchs KP, Zverlov VV, Velikodvorskaya GA, Lottspeich F, Schwarz WH (2003). Lic16A of Clostridium thermocellum, a non-cellulosomal, highly complex endo-beta-1,3-glucanase bound to the outer cell surface.
  • DOI: 10.1099/ijs.0.003483-0
    Shiratori H, Sasaya K, Ohiwa H, Ikeno H, Ayame S, Kataoka N, Miya A, Beppu T, Ueda K (2009). Clostridium clariflavum sp. nov. and Clostridium caenicola sp. nov., moderately thermophilic, cellulose-/cellobiose-digesting bacteria isolated from methanogenic sludge.
  • DOI: 10.1016/j.biortech.2010.01.042
    Geng A, He Y, Qian C, Yan X, Zhou Z (2010). Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium.
  • DOI: 10.1007/s12010-011-9456-z
    Liu JM, Xin XJ, Li CX, Xu JH, Bao J (2011). Cloning of thermostable cellulase genes of Clostridium thermocellum and their secretive expression in Bacillus subtilis.
  • DOI: 10.3390/ijms16023116
    Islam R, Sparling R, Cicek N, Levin DB (2015). Optimization of influential nutrients during direct cellulose fermentation into hydrogen by Clostridium thermocellum.
Outside links and data sources
Retrieved 17 days ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:19475
Local history
  • Registered 7 months ago
  • Last modified 17 days ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license