Strain sc|0021693


This strain is associated as type material for multiple names:

StrainInfo: SI-ID 1093 T

Taxon
Bacillus amyloliquefaciens (not Bacillus amyloliquefaciens subsp. amyloliquefaciens)
Sample
Soil (GB)
Cultures (20)
LMG 9814 = ATCC 23350 = CIP 103265 = DSM 7 = IFO 15535 = LMG 12234 = NCIMB 12077 = NRRL B-14393 = VTT E-80124 = CCUG 28519 = KCTC 1660 = NCCB 91058 = LMD 91.58 = NBRC 15535 = CFBP 4246 = HAMBI 1824 = NCAIM B.01704 = BCRC 11601 = CCRC 11601 = CCMM B601
Other Designations (11)
Fukumoto strain F = Logan B0168 = Campbell strain F = Logan B0177 = LMG 9814T QC 10/98 = Fukumoto starin F = Campbell F = Fukumoto F = LMG 9814T QC 2/01 = F ATCC23350 = Fukomoto F
Sequences (28)
Associated Publications (17)
  • DOI: 10.1002/bit.260330209
    Roychoudhury S, Parulekar SJ, Weigand WA (1989). Cell growth and alpha-amylase production characteristics of Bacillus amyloliquefaciens.
  • DOI: 10.3389/fmicb.2017.00022
    Fan B, Blom J, Klenk HP, Borriss R (2017). Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex.
  • DOI: 10.1007/s10528-019-09927-z
    Deng Q, Wang R, Sun D, Sun L, Wang Y, Pu Y, Fang Z, Xu D, Liu Y, Ye R, Yin S, Xie S, Gooneratne R (2019). Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity.
  • DOI: 10.1128/spectrum.02169-21
    Zaid DS, Cai S, Hu C, Li Z, Li Y (2022). Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
  • DOI: 10.3389/fmicb.2024.1384691
    Dahar GY, Wang HW, Rajer FU, Jin P, Xu P, Abro MA, Qureshi AS, Karim A, Miao W (2024). Comparative genomic analysis of Bacillus atrophaeus HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities.
  • DOI: 10.1128/jb.164.3.1283-1287.1985
    Kopec LK, Yasbin RE, Marrero R (1985). Bacteriophage SPO2-mediated plasmid transduction in transpositional mutagenesis within the genus Bacillus.
  • DOI: 10.1016/j.jbiotec.2008.02.005
    Tzvetkov MV, Liebl W (2008). Phytate utilization by genetically engineered lysine-producing Corynebacterium glutamicum.
  • DOI: 10.1128/JB.00440-11
    Zhang G, Deng A, Xu Q, Liang Y, Chen N, Wen T (2011). Complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and ribavirin.
  • DOI: 10.1371/journal.pone.0131585
    Sigdel S, Singh R, Kim TS, Li J, Kim SY, Kim IW, Jung WS, Pan CH, Kang YC, Lee JK (2015). Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production.
  • DOI: 10.1038/srep40976
    Zhi Y, Wu Q, Xu Y (2017). Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45.
  • DOI: 10.3390/biom11020193
    Schwarz J, Hubmann G, Rosenthal K, Lutz S (2021). Triaging of Culture Conditions for Enhanced Secondary Metabolite Diversity from Different Bacteria.
  • DOI: 10.5423/PPJ.FT.09.2021.0138
    Kim MJ, Shim CK, Park JH (2021). Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation.
  • DOI: 10.1002/cbic.202300368
    Zong L, Zhang Y, Shao Z, Ljubic A, Jacobsen C, Gao R, Eser BE, Wang Y, Guo Z (2023). Selective and Sustainable Production of Sub-terminal Hydroxy Fatty Acids by a Self-Sufficient CYP102 Enzyme from Bacillus Amyloliquefaciens.
  • DOI: 10.1186/s40643-022-00563-x
    Luo Y, Chen L, Lu Z, Zhang W, Liu W, Chen Y, Wang X, Du W, Luo J, Wu H (2022). Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism.
  • DOI: 10.3390/foods13132012
    Touceda-Suarez A, Touceda-Suarez M, Arboleya JC, Sorensen PM (2024). Harnessing Bacillus amyloliquefaciens for Amazake Production: Comparison with Aspergillus oryzae Amazake for Metabolomic Characteristics, Microbial Diversity, and Sensory Profile.
  • Fan C, Li S, Li C, Ma S, Zou L, Wu Q (2012). [Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda].
  • DOI: 10.1016/j.jbiosc.2014.10.021
    Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y (2014). Production of itaconic acid in Escherichia coli expressing recombinant alpha-amylase using starch as substrate.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:21693
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license