-
DOI: 10.1002/bit.260330209
Roychoudhury S, Parulekar SJ, Weigand WA
(1989).
Cell growth and alpha-amylase production characteristics of Bacillus amyloliquefaciens.
-
DOI: 10.3389/fmicb.2017.00022
Fan B, Blom J, Klenk HP, Borriss R
(2017).
Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis Form an "Operational Group B. amyloliquefaciens" within the B. subtilis Species Complex.
-
DOI: 10.1007/s10528-019-09927-z
Deng Q, Wang R, Sun D, Sun L, Wang Y, Pu Y, Fang Z, Xu D, Liu Y, Ye R, Yin S, Xie S, Gooneratne R
(2019).
Complete Genome of Bacillus velezensis CMT-6 and Comparative Genome Analysis Reveals Lipopeptide Diversity.
-
DOI: 10.1128/spectrum.02169-21
Zaid DS, Cai S, Hu C, Li Z, Li Y
(2022).
Comparative Genome Analysis Reveals Phylogenetic Identity of Bacillus velezensis HNA3 and Genomic Insights into Its Plant Growth Promotion and Biocontrol Effects.
-
DOI: 10.3389/fmicb.2024.1384691
Dahar GY, Wang HW, Rajer FU, Jin P, Xu P, Abro MA, Qureshi AS, Karim A, Miao W
(2024).
Comparative genomic analysis of Bacillus atrophaeus HAB-5 reveals genes associated with antimicrobial and plant growth-promoting activities.
-
DOI: 10.1128/jb.164.3.1283-1287.1985
Kopec LK, Yasbin RE, Marrero R
(1985).
Bacteriophage SPO2-mediated plasmid transduction in transpositional mutagenesis within the genus Bacillus.
-
DOI: 10.1016/j.jbiotec.2008.02.005
Tzvetkov MV, Liebl W
(2008).
Phytate utilization by genetically engineered lysine-producing Corynebacterium glutamicum.
-
DOI: 10.1128/JB.00440-11
Zhang G, Deng A, Xu Q, Liang Y, Chen N, Wen T
(2011).
Complete genome sequence of Bacillus amyloliquefaciens TA208, a strain for industrial production of guanosine and ribavirin.
-
DOI: 10.1371/journal.pone.0131585
Sigdel S, Singh R, Kim TS, Li J, Kim SY, Kim IW, Jung WS, Pan CH, Kang YC, Lee JK
(2015).
Characterization of a Mannose-6-Phosphate Isomerase from Bacillus amyloliquefaciens and Its Application in Fructose-6-Phosphate Production.
-
DOI: 10.1038/srep40976
Zhi Y, Wu Q, Xu Y
(2017).
Genome and transcriptome analysis of surfactin biosynthesis in Bacillus amyloliquefaciens MT45.
-
DOI: 10.3390/biom11020193
Schwarz J, Hubmann G, Rosenthal K, Lutz S
(2021).
Triaging of Culture Conditions for Enhanced Secondary Metabolite Diversity from Different Bacteria.
-
DOI: 10.5423/PPJ.FT.09.2021.0138
Kim MJ, Shim CK, Park JH
(2021).
Control Efficacy of Bacillus velezensis AFB2-2 against Potato Late Blight Caused by Phytophthora infestans in Organic Potato Cultivation.
-
DOI: 10.1002/cbic.202300368
Zong L, Zhang Y, Shao Z, Ljubic A, Jacobsen C, Gao R, Eser BE, Wang Y, Guo Z
(2023).
Selective and Sustainable Production of Sub-terminal Hydroxy Fatty Acids by a Self-Sufficient CYP102 Enzyme from Bacillus Amyloliquefaciens.
-
DOI: 10.1186/s40643-022-00563-x
Luo Y, Chen L, Lu Z, Zhang W, Liu W, Chen Y, Wang X, Du W, Luo J, Wu H
(2022).
Genome sequencing of biocontrol strain Bacillus amyloliquefaciens Bam1 and further analysis of its heavy metal resistance mechanism.
-
DOI: 10.3390/foods13132012
Touceda-Suarez A, Touceda-Suarez M, Arboleya JC, Sorensen PM
(2024).
Harnessing Bacillus amyloliquefaciens for Amazake Production: Comparison with Aspergillus oryzae Amazake for Metabolomic Characteristics, Microbial Diversity, and Sensory Profile.
-
Fan C, Li S, Li C, Ma S, Zou L, Wu Q
(2012).
[Isolation, identification and cellulase production of a cellulolytic bacterium from intestines of giant panda].
-
DOI: 10.1016/j.jbiosc.2014.10.021
Okamoto S, Chin T, Nagata K, Takahashi T, Ohara H, Aso Y
(2014).
Production of itaconic acid in Escherichia coli expressing recombinant alpha-amylase using starch as substrate.