Strain sc|0021711


StrainInfo: SI-ID 92877 T

Taxon
Mycobacterium abscessus subsp. abscessus
Sample
Source unknown
Cultures (10)
CT1990-04975 = ATCC 19977 = CCUG 20993 = DSM 44196 = CCUG 27982 = CIP 104536 = DSM 43491 = NCTC 13031 = JCM 13569 = CNCTC 7261
Other Designations (11)
C04975 = ITM M00989 = ITM 500219 = V. Vincent 14 042 0023 = TMC 1543 = MS 746 = P.Hauduroy L948 = L948 = Hauduroy L948 = GA 716 = 14 042 0023
Sequences (45)
Associated Publications (65)
  • DOI: 10.1099/00207713-42-2-240
    Kusunoki S, Ezaki T (1992). Proposal of Mycobacterium peregrinum sp. nov., nom. rev., and elevation of Mycobacterium chelonae subsp. abscessus (Kubica et al.) to species status: Mycobacterium abscessus comb. nov.
  • DOI: 10.1099/00221287-148-10-2987
    Howard ST, Byrd TF, Lyons CR (2002). A polymorphic region in Mycobacterium abscessus contains a novel insertion sequence element.
  • DOI: 10.1371/journal.pntd.0007799
    Chouhan D, Barani Devi T, Chattopadhyay S, Dharmaseelan S, Nair GB, Devadas K, Radhakrishna Pillai M (2019). Mycobacterium abscessus infection in the stomach of patients with various gastric symptoms.
  • Su LH, Chia JH, Leu HS, Cheng SW, Kuo AJ, Sun CF, Wu TL (2000). DNA polymorphism of Mycobacterium abscessus analyzed by infrequent-restriction-site polymerase chain reaction.
  • Sha W, Weng XH, Xiao HP, He GJ (2003). [Investigation of drug-resistance to rifampin and rpoB gene sequence analysis of Mycobacterium abscessus].
  • DOI: 10.1128/JCM.42.12.5582-5587.2004
    Zhang Y, Yakrus MA, Graviss EA, Williams-Bouyer N, Turenne C, Kabani A, Wallace RJ Jr (2004). Pulsed-field gel electrophoresis study of Mycobacterium abscessus isolates previously affected by DNA degradation.
  • DOI: 10.1007/s12275-009-0139-1
    Jeon BY, Kwak J, Lee SS, Cho S, Won CJ, Kim JM, Shin SJ (2009). Comparative analysis of immune responses to Mycobacterium abscessus infection and its antigens in two murine models.
  • DOI: 10.1128/JCM.01665-10
    Matsumoto CK, Chimara E, Bombarda S, Duarte RS, Leao SC (2010). Diversity of pulsed-field gel electrophoresis patterns of Mycobacterium abscessus type 2 clinical isolates.
  • DOI: 10.1128/JCM.01132-13
    Shallom SJ, Gardina PJ, Myers TG, Sebastian Y, Conville P, Calhoun LB, Tettelin H, Olivier KN, Uzel G, Sampaio EP, Holland SM, Zelazny AM (2013). New rapid scheme for distinguishing the subspecies of the Mycobacterium abscessus group and identifying Mycobacterium massiliense isolates with inducible clarithromycin resistance.
  • DOI: 10.1099/mic.0.070318-0
    Howard ST, Newman KL, McNulty S, Brown-Elliott BA, Vasireddy R, Bridge L, Wallace RJ (2013). Insertion site and distribution of a genomic island conferring DNA phosphorothioation in the Mycobacterium abscessus complex.
  • DOI: 10.1186/1471-2164-14-879
    Tan JL, Khang TF, Ngeow YF, Choo SW (2013). A phylogenomic approach to bacterial subspecies classification: proof of concept in Mycobacterium abscessus.
  • DOI: 10.1128/JCM.01144-14
    Davidson RM, Hasan NA, Reynolds PR, Totten S, Garcia B, Levin A, Ramamoorthy P, Heifets L, Daley CL, Strong M (2014). Genome sequencing of Mycobacterium abscessus isolates from patients in the united states and comparisons to globally diverse clinical strains.
  • DOI: 10.1093/jac/dku550
    Maurer FP, Bruderer VL, Castelberg C, Ritter C, Scherbakov D, Bloemberg GV, Bottger EC (2015). Aminoglycoside-modifying enzymes determine the innate susceptibility to aminoglycoside antibiotics in rapidly growing mycobacteria.
  • DOI: 10.1128/JCM.02950-14
    Brown-Elliott BA, Vasireddy S, Vasireddy R, Iakhiaeva E, Howard ST, Nash K, Parodi N, Strong A, Gee M, Smith T, Wallace RJ Jr (2015). Utility of sequencing the erm(41) gene in isolates of Mycobacterium abscessus subsp. abscessus with low and intermediate clarithromycin MICs.
  • DOI: 10.1128/AAC.00331-15
    Abdalla MY, Switzer BL, Goss CH, Aitken ML, Singh PK, Britigan BE (2015). Gallium Compounds Exhibit Potential as New Therapeutic Agents against Mycobacterium abscessus.
  • DOI: 10.1007/s10534-016-9951-3
    Agertt VA, Bonez PC, Rossi GG, Flores Vda C, Siqueira Fdos S, Mizdal CR, Marques LL, de Oliveira GN, de Campos MM (2016). Identification of antimicrobial activity among new sulfonamide metal complexes for combating rapidly growing mycobacteria.
  • DOI: 10.1093/jac/dkw466
    Rominski A, Roditscheff A, Selchow P, Bottger EC, Sander P (2016). Intrinsic rifamycin resistance of Mycobacterium abscessus is mediated by ADP-ribosyltransferase MAB_0591.
  • DOI: 10.1128/AAC.00155-17
    Aziz DB, Low JL, Wu ML, Gengenbacher M, Teo JWP, Dartois V, Dick T (2017). Rifabutin Is Active against Mycobacterium abscessus Complex.
  • DOI: 10.1186/s12866-017-1102-7
    Ribeiro GM, Matsumoto CK, Real F, Teixeira D, Duarte RS, Mortara RA, Leao SC, de Souza Carvalho-Wodarz C (2017). Increased survival and proliferation of the epidemic strain Mycobacterium abscessus subsp. massiliense CRM0019 in alveolar epithelial cells.
  • DOI: 10.1099/mic.0.000528
    Gregoire SA, Byam J, Pavelka MS (2017). galK-based suicide vector mediated allelic exchange in Mycobacterium abscessus.
  • DOI: 10.1093/jac/dkx284
    Rominski A, Schulthess B, Muller DM, Keller PM, Sander P (2017). Effect of beta-lactamase production and beta-lactam instability on MIC testing results for Mycobacterium abscessus.
  • DOI: 10.1093/femspd/ftx107
    Kim SW, Subhadra B, Whang J, Back YW, Bae HS, Kim HJ, Choi CH (2017). Clinical Mycobacterium abscessus strain inhibits autophagy flux and promotes its growth in murine macrophages.
  • DOI: 10.1016/j.micpath.2017.11.002
    Rossi GG, Guterres KB, Bonez PC, da Silva Gundel S, Aggertt VA, Siqueira FS, Ourique AF, Wagnerd R, Klein B, Santos RCV, de Campos MMA (2017). Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria.
  • DOI: 10.2174/1573406414666171204102633
    Ramis IB, Figueiredo R, Ramos DF, Halicki PCB, von Groll A, Viveiros M, do Ceu Costa M, da Silva PEA (2018). Activity of Rifabutin and Hemi-synthetic Derivatives Against Mycobacterium abscessus.
  • DOI: 10.1099/jmm.0.000857
    Ng HF, Tan JL, Zin T, Yap SF, Ngeow YF (2018). A mutation in anti-sigma factor MAB_3542c may be responsible for tigecycline resistance in Mycobacterium abscessus.
  • DOI: 10.1016/j.micinf.2018.10.006
    Steindor M, Nkwouano V, Stefanski A, Stuehler K, Ioerger TR, Bogumil D, Jacobsen M, Mackenzie CR, Kalscheuer R (2018). A proteomics approach for the identification of species-specific immunogenic proteins in the Mycobacterium abscessus complex.
  • DOI: 10.1128/AAC.02234-18
    Cheng A, Tsai YT, Chang SY, Sun HY, Wu UI, Sheng WH, Chen YC, Chang SC (2019). In Vitro Synergism of Rifabutin with Clarithromycin, Imipenem, and Tigecycline against the Mycobacterium abscessus Complex.
  • DOI: 10.1128/mBio.02895-18
    Pandey R, Chen L, Manca C, Jenkins S, Glaser L, Vinnard C, Stone G, Lee J, Mathema B, Nuermberger EL, Bonomo RA, Kreiswirth BN (2019). Dual beta-Lactam Combinations Highly Active against Mycobacterium abscessus Complex In Vitro.
  • DOI: 10.1016/j.ijmm.2019.151380
    Ng HF, Ngeow YF, Yap SF, Zin T, Tan JL (2019). Tigecycline resistance may be associated with dysregulated response to stress in Mycobacterium abscessus.
  • DOI: 10.1128/MRA.00155-21
    Amarh ED, Gauthier CH, Dedrick RM, Garlena RA, Russell DA, Jacobs-Sera D, Zack KM, Hatfull GF (2021). Genome Sequence of Mycobacterium abscessus Phage phiT45-1.
  • DOI: 10.1186/s12864-021-07670-7
    Cornejo-Granados F, Kohl TA, Sotomayor FV, Andres S, Hernandez-Pando R, Hurtado-Ramirez JM, Utpatel C, Niemann S, Maurer FP, Ochoa-Leyva A (2021). Secretome characterization of clinical isolates from the Mycobacterium abscessus complex provides insight into antigenic differences.
  • DOI: 10.1128/mBio.01049-21
    Rifat D, Chen L, Kreiswirth BN, Nuermberger EL (2021). Genome-Wide Essentiality Analysis of Mycobacterium abscessus by Saturated Transposon Mutagenesis and Deep Sequencing.
  • DOI: 10.1128/AAC.01509-21
    Schildkraut JA, Coolen JPM, Burbaud S, Sangen JJN, Kwint MP, Floto RA, Op den Camp HJM, Te Brake LHM, Wertheim HFL, Neveling K, Hoefsloot W, van Ingen J (2021). RNA Sequencing Elucidates Drug-Specific Mechanisms of Antibiotic Tolerance and Resistance in Mycobacterium abscessus.
  • DOI: 10.1371/journal.pone.0260003
    Sudadech P, Roytrakul S, Kaewprasert O, Sirichoat A, Chetchotisakd P, Kanthawong S, Faksri K (2021). Assessment of in vitro activities of novel modified antimicrobial peptides against clarithromycin resistant Mycobacterium abscessus.
  • DOI: 10.1128/spectrum.01990-21
    Meir M, Foreman M, Bar-Oz M, Naor N, Rozenblit A, Barkan D (2022). Comparison of Isogenic Strains Shows No Evidence of Altered Nosocomial Transmission-Competency of Rough, GPL-Negative Mycobacterium abscessus Strains.
  • DOI: 10.3389/fcimb.2022.809348
    Bajaj AO, Slechta ES, Barker AP (2022). Rapid and Accurate Differentiation of Mycobacteroides abscessus Complex Species by Liquid Chromatography-Ultra-High-Resolution Orbitrap Mass Spectrometry.
  • DOI: 10.7554/eLife.71947
    Akusobi C, Benghomari BS, Zhu J, Wolf ID, Singhvi S, Dulberger CL, Ioerger TR, Rubin EJ (2022). Transposon mutagenesis in Mycobacterium abscessus identifies an essential penicillin-binding protein involved in septal peptidoglycan synthesis and antibiotic sensitivity.
  • DOI: 10.1021/acsinfecdis.2c00229
    Batchelder HR, Zandi TA, Kaushik A, Naik A, Story-Roller E, Maggioncalda EC, Lamichhane G, Nuermberger EL, Townsend CA (2022). Structure-Activity Relationship of Penem Antibiotic Side Chains Used against Mycobacteria Reveals Highly Active Compounds.
  • DOI: 10.1073/pnas.2207505119
    Crowe AM, Krekhno JMC, Brown KL, Kulkarni JA, Yam KC, Eltis LD (2022). The unusual convergence of steroid catabolic pathways in Mycobacterium abscessus.
  • DOI: 10.1128/spectrum.02672-22
    Sullivan JR, Yao J, Courtine C, Lupien A, Herrmann J, Muller R, Behr MA (2022). Natural Products Lysobactin and Sorangicin A Show In Vitro Activity against Mycobacterium abscessus Complex.
  • DOI: 10.1128/spectrum.05270-22
    Hershko Y, Adler A, Barkan D, Meir M (2023). Glycopeptidolipid Defects Leading to Rough Morphotypes of Mycobacterium abscessus Do Not Confer Clinical Antibiotic Resistance.
  • DOI: 10.1128/spectrum.05344-22
    Calvet-Seral J, Crespo-Yuste E, Mathys V, Rodriguez-Villalobos H, Ceyssens PJ, Martin A, Gonzalo-Asensio J (2023). Targeted Chromosomal Barcoding Establishes Direct Genotype-Phenotype Associations for Antibiotic Resistance in Mycobacterium abscessus.
  • DOI: 10.1128/aac.00090-23
    Van N, Degefu YN, Leus PA, Larkins-Ford J, Klickstein J, Maurer FP, Stone D, Poonawala H, Thorpe CM, Smith TC 2nd, Aldridge BB (2023). Novel Synergies and Isolate Specificities in the Drug Interaction Landscape of Mycobacterium abscessus.
  • DOI: 10.3389/fcimb.2023.1217975
    Nie W, Gao S, Su L, Liu L, Geng R, You Y, Chu N (2023). Antibacterial activity of the novel compound Sudapyridine (WX-081) against Mycobacterium abscessus.
  • DOI: 10.1128/aac.01348-23
    Teng T, Chen S, Huo F, Jia J, Zhao L, Jiang G, Wang F, Chu N, Huang H (2024). Efflux pump effects on levofloxacin resistance in Mycobacterium abscessus.
  • DOI: 10.1073/pnas.2403206121
    De K, Belardinelli JM, Pandurangan AP, Ehianeta T, Lian E, Palcekova Z, Lam H, Gonzalez-Juarrero M, Bryant JM, Blundell TL, Parkhill J, Floto RA, Lowary TL, Wheat WH, Jackson M (2024). Lipoarabinomannan modification as a source of phenotypic heterogeneity in host-adapted Mycobacterium abscessus isolates.
  • DOI: 10.1128/mbio.00609-24
    Dousa KM, Shin E, Kurz SG, Plummer M, Nantongo M, Bethel CR, Taracila MA, Nguyen DC, Kreiswith BN, Daley CL, Remy KE, Holland SM, Bonomo RA (2024). Synergistic effects of sulopenem in combination with cefuroxime or durlobactam against Mycobacterium abscessus.
  • DOI: 10.1128/aac.00648-24
    Rimal B, Lippincott CK, Panthi CM, Xie Y, Keepers TR, Alley M, Lamichhane G (2024). Efficacy of epetraborole against Mycobacteroides abscessus in a mouse model of lung infection.
  • DOI: 10.3389/fmicb.2018.00067
    Gupta RS, Lo B, Son J (2018). Phylogenomics and Comparative Genomic Studies Robustly Support Division of the Genus Mycobacterium into an Emended Genus Mycobacterium and Four Novel Genera.
  • DOI: 10.1128/JCM.01274-10
    Macheras E, Roux AL, Bastian S, Leao SC, Palaci M, Sivadon-Tardy V, Gutierrez C, Richter E, Rusch-Gerdes S, Pfyffer G, Bodmer T, Cambau E, Gaillard JL, Heym B (2010). Multilocus sequence analysis and rpoB sequencing of Mycobacterium abscessus (sensu lato) strains.
  • DOI: 10.1371/journal.pone.0005660
    Ripoll F, Pasek S, Schenowitz C, Dossat C, Barbe V, Rottman M, Macheras E, Heym B, Herrmann JL, Daffe M, Brosch R, Risler JL, Gaillard JL (2009). Non mycobacterial virulence genes in the genome of the emerging pathogen Mycobacterium abscessus.
  • DOI: 10.1128/IAI.00835-06
    Catherinot E, Clarissou J, Etienne G, Ripoll F, Emile JF, Daffe M, Perronne C, Soudais C, Gaillard JL, Rottman M (2006). Hypervirulence of a rough variant of the Mycobacterium abscessus type strain.
  • DOI: 10.1186/1471-2164-8-114
    Ripoll F, Deshayes C, Pasek S, Laval F, Beretti JL, Biet F, Risler JL, Daffe M, Etienne G, Gaillard JL, Reyrat JM (2007). Genomics of glycopeptidolipid biosynthesis in Mycobacterium abscessus and M. chelonae.
  • DOI: 10.1186/1471-2180-13-3
    Sassi M, Ben Kahla I, Drancourt M (2013). Mycobacterium abscessus multispacer sequence typing.
  • DOI: 10.1093/jac/dkt410
    Soroka D, Dubee V, Soulier-Escrihuela O, Cuinet G, Hugonnet JE, Gutmann L, Mainardi JL, Arthur M (2013). Characterization of broad-spectrum Mycobacterium abscessus class A beta-lactamase.
  • DOI: 10.1093/jac/dkw022
    Lefebvre AL, Dubee V, Cortes M, Dorchene D, Arthur M, Mainardi JL (2016). Bactericidal and intracellular activity of beta-lactams against Mycobacterium abscessus.
  • DOI: 10.1128/AAC.00623-18
    Le Run E, Arthur M, Mainardi JL (2018). In Vitro and Intracellular Activity of Imipenem Combined with Rifabutin and Avibactam against Mycobacterium abscessus.
  • DOI: 10.1093/jac/dky526
    Ruth MM, Sangen JJN, Remmers K, Pennings LJ, Svensson E, Aarnoutse RE, Zweijpfenning SMH, Hoefsloot W, Kuipers S, Magis-Escurra C, Wertheim HFL, van Ingen J (2019). A bedaquiline/clofazimine combination regimen might add activity to the treatment of clinically relevant non-tuberculous mycobacteria.
  • DOI: 10.1128/AAC.00449-19
    Ruth MM, van Rossum M, Koeken VACM, Pennings LJ, Svensson EM, Ruesen C, Bowles EC, Wertheim HFL, Hoefsloot W, van Ingen J (2019). Auranofin Activity Exposes Thioredoxin Reductase as a Viable Drug Target in Mycobacterium abscessus.
  • DOI: 10.2217/fmb-2018-0310
    Schildkraut JA, Pennings LJ, Ruth MM, de Brouwer AP, Wertheim HF, Hoefsloot W, de Jong A, van Ingen J (2019). The differential effect of clarithromycin and azithromycin on induction of macrolide resistance in Mycobacterium abscessus.
  • DOI: 10.3389/fphar.2021.790767
    Bich Hanh BT, Quang NT, Park Y, Heo BE, Jeon S, Park JW, Jang J (2021). Omadacycline Potentiates Clarithromycin Activity Against Mycobacterium abscessus.
  • DOI: 10.1093/jac/dkae181
    Sanchez L, Bitar M, Herail Q, Dorchene D, Hugonnet JE, Arthur M, Mainardi JL (2024). In vitro and intracellular activity of vaborbactam combined with beta-lactams against Mycobacterium abscessus.
  • DOI: 10.4103/ijmy.ijmy_73_18
    Moore JE, Koulianos G, Hardy M, Misawa N, Millar BC (2018). Antimycobacterial activity of veterinary antibiotics (Apramycin and Framycetin) against Mycobacterium abscessus: Implication for patients with cystic fibrosis.
  • DOI: 10.4103/ijmy.ijmy_142_18
    Kirkwood ZI, Millar BC, Downey DG, Moore JE (2018). Antimycobacterial activity of nonantibiotics associated with the polypharmacy of cystic fibrosis (CF) against mycobacterium abscessus.
  • DOI: 10.4103/ijmy.ijmy_167_18
    Millar BC, Nelson D, Moore RE, Rao JR, Moore JE (2019). Antimicrobial properties of basidiomycota macrofungi to Mycobacterium abscessus isolated from patients with cystic fibrosis.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:21711
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license