Strain sc|0028303


Strain numbers

ATCC 13525 = CCEB 546 = CCUG 1253 = CFBP 2102 = CIP 69.13 = DSM 50090 = IFO 14160 = JCM 5963 = LMG 1794 = M. Rhodes 28/5 = NBIMCC 8758 = NBRC 14160 = NCCB 76040 = NCIB 9046 = NCIMB 9046 = NCTC 10038 = NRRL B-14678 = RH 818 = VKM B-894

StrainInfo: SI-ID 4055 T

Taxon
Pseudomonas fluorescens
Sample
Soil, Reading town water- works (pre-filter tanks) (GB)
Cultures (48)
LMG 1794 = ATCC 13525 = CCM 2115 = CCUG 1253 = CECT 378 = DSM 50090 = IAM 12022 = ICMP 3512 = IFO 14160 = IMET 10619 = NCDO 1524 = NCIB 9046 = NCPPB 1964 = NCTC 10038 = PDDCC 3512 = CIP 6913 = CCUG 2030 = JCM 5963 = CCRC 11028 = NCIMB 9046 = IMI 347502 = VKM B-894 = NCFB 1524 = CFBP 2102 = HAMBI 27 = VTT E-93443 = AS 1.1802 = NBRC 14160 = NRRL B-14678 = NCCB 76040 = LMD 76.40 = BCRC 11028 = CCT 3178 = CCT 0595 = CCT 2718 = ICMP 3513 = KCTC 12453 = KACC 10327 = KACC 10415 = NCIMB 30164 = NCAIM B.01925 = CCM 2 = CDBB 1243 = ACM 441 = NRRL B-2641 = CIP 69.13 = CNCTC 5793 = CGMCC 1.1802
Other Designations (50)
CCEB 546 = Young 1580A1 = Kosako 85003 = USCC 2031 = Stanier 192 = MMCA 40 = USCC 1330 = Rhodes 28/5 = WDCM 00115 = FIRDI 1028 = HNCMB 173001 = CNCTC Ps 154/77 = CCEB 762 = ICPB 3200 = KM 361 = Lautrop PJ 239 = RIMD 1615001 = Hugh 818 = VKM894 = RH 818 = Kado 11D42 = NZRCC 10259 = CCTM La 3364 = R.Y. Stanier 192, Biotype A = Brno 2115 = Rhodes M. 28/5 = CCM/2 Brno 1964 = IMI B03450 = LMG 1794T QC 1/01 = LMG1794T QC 6/04 = M.E. Rhodes 28/5 = R.Y.Stanier 192 = 193 = KS 0112 = 28/5 = 818 = CCB 546 = PJ239 = P 65 = Hugh R. RH818 = CCEB 456 = Stanier R.Y. 193 = Stanier 193 = KM 2590 = R.Hugh 818 = M.Rhodes 28/5 = IMI 300485 = NCTC 2583 = ATCC 6972 = NCIB 8194
Sequences (74)
Associated Publications (72)
  • DOI: 10.1016/0378-1097(92)90720-9
    al-Aoukaty A, Appanna VD, Falter H (1992). Gallium toxicity and adaptation in Pseudomonas fluorescens.
  • DOI: 10.1016/0378-1097(91)90490-2
    al-Aoukaty A, Appanna VD, Huang J (1991). Exocellular and intracellular accumulation of lead in Pseudomonas fluorescens ATCC 13525 is mediated by the phosphate content of the growth medium.
  • DOI: 10.1021/bi00435a045
    Hutnik CM, Szabo AG (1989). Confirmation that multiexponential fluorescence decay behavior of holoazurin originates from conformational heterogeneity.
  • DOI: 10.1021/bi00435a046
    Hutnik CM, Szabo AG (1989). A time-resolved fluorescence study of azurin and metalloazurin derivatives.
  • Veremeichenko SN, Zdorovenko GM, Zakharova IIa (1989). [Fatty acid composition of lipid A in Pseudomonas fluorescens].
  • DOI: 10.1128/jb.120.1.147-153.1974
    Eisenberg RC, Butters SJ, Quay SC, Friedman SB (1974). Glucose uptake and phosphorylation in Pseudomonas fluorescens.
  • Kiprianova EA, Levanova GF, Shvetsov IuP, Garagulia AD (1983). [Molecular DNA-DNA hybridization in Pseudomonas fluorescens and Pseudomonas putida].
  • Veremeichenko SN, Zdorovenko GM (1994). [Characteristics of Pseudomonas fluorescens lipopolysaccharide].
  • Shuman B, Dix TA (1993). Cloning, nucleotide sequence, and expression of a p-hydroxybenzoate hydroxylase isozyme gene from Pseudomonas fluorescens.
  • DOI: 10.1073/pnas.90.20.9403
    McCarty GW, Bremner JM (1993). Effects of Mn2+ and Mg2+ on assimilation of NO3- and NH4+ by soil microorganisms.
  • DOI: 10.1016/S0099-2399(96)80013-6
    Michailesco PM, Valcarcel J, Grieve AR, Levallois B, Lerner D (1996). Bacterial leakage in endodontics: an improved method for quantification.
  • DOI: 10.1099/00221287-144-11-3119
    Meyer JM, Stintzi A, Coulanges V, Shivaji S, Voss JA, Taraz K, Budzikiewic H (1998). Siderotyping of fluorescent pseudomonads: characterization of pyoverdines of Pseudomonas fluorescens and Pseudomonas putida strains from Antarctica.
  • Zdorovenko GM, Gvozdiak RI, Gubanova NIa, Afonina GB, Zdorovenko EL (1999). [Characteristics of lipopolysaccharide from Pseudomonas fluorescens (biovar I)].
  • DOI: 10.1128/AEM.66.8.3492-3498.2000
    Inoue H, Takimura O, Fuse H, Murakami K, Kamimura K, Yamaoka Y (2000). Degradation of triphenyltin by a fluorescent pseudomonad.
  • DOI: 10.1046/j.1462-2920.2000.00117.x
    Rossbach S, Kukuk ML, Wilson TL, Feng SF, Pearson MM, Fisher MA (2000). Cadmium-regulated gene fusions in Pseudomonas fluorescens.
  • Zdorovenko GM, Veremeichenko SN (2001). [Comparative characteristics of lipopolysaccharides of various Pseudomonas fluorescens strains (Biovar I)].
  • Guerra R, Iacondini A, Abbondanzi F, Matteucci C, Bruzzi L (2002). A new microbial assay for the toxicity detection of contaminated soils.
  • DOI: 10.1078/0944-5013-00188
    Katiyar V, Goel R (2003). Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonasfluorescens.
  • DOI: 10.1016/s0045-6535(03)00717-3
    Abbondanzi F, Cachada A, Campisi T, Guerra R, Raccagni M, Iacondini A (2003). Optimisation of a microbial bioassay for contaminated soil monitoring: bacterial inoculum standardisation and comparison with Microtox assay.
  • DOI: 10.1099/mic.0.26454-0
    Sonawane A, Kloppner U, Hovel S, Volker U, Rohm KH (2003). Identification of Pseudomonas proteins coordinately induced by acidic amino acids and their amides: a two-dimensional electrophoresis study.
  • Veremecheinko SN, Vodianik MA, Zdorovenko GM (2005). [Structural characteristics and biological properties of Pseudomonas fluorescens lipopolysaccharides].
  • DOI: 10.1016/j.micres.2005.02.006
    West TP (2005). Effect of carbon source on pyrimidine formation in Pseudomonas fluorescens ATCC 13525.
  • DOI: 10.1128/aem.60.3.861-870.1994
    Juozaitis A, Willeke K, Grinshpun SA, Donnelly J (1994). Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms.
  • DOI: 10.1128/aem.62.8.2778-2782.1996
    Appanna VD, Pierre MS (1996). Aluminum Elicits Exocellular Phosphatidylethanolamine Production in Pseudomonas fluorescens.
  • DOI: 10.1016/j.bmc.2007.03.060
    Xiao ZP, Xue JY, Tan SH, Li HQ, Zhu HL (2007). Synthesis, structure, and structure-activity relationship analysis of enamines as potential antibacterials.
  • DOI: 10.2166/wst.2007.288
    Simoes M, Pereira MO, Vieira MJ (2007). The role of hydrodynamic stress on the phenotypic characteristics of single and binary biofilms of Pseudomonas fluorescens.
  • DOI: 10.1111/j.1462-2920.2007.01448.x
    Workentine ML, Harrison JJ, Stenroos PU, Ceri H, Turner RJ (2007). Pseudomonas fluorescens' view of the periodic table.
  • DOI: 10.1016/j.ijfoodmicro.2007.11.041
    Simoes M, Simoes LC, Cleto S, Pereira MO, Vieira MJ (2007). The effects of a biocide and a surfactant on the detachment of Pseudomonas fluorescens from glass surfaces.
  • DOI: 10.1016/j.ejmech.2007.11.026
    Xiao ZP, Fang RQ, Li HQ, Xue JY, Zheng Y, Zhu HL (2007). Enamines as novel antibacterials and their structure-activity relationships.
  • DOI: 10.1186/1471-2180-8-7
    Moon CD, Zhang XX, Matthijs S, Schafer M, Budzikiewicz H, Rainey PB (2008). Genomic, genetic and structural analysis of pyoverdine-mediated iron acquisition in the plant growth-promoting bacterium Pseudomonas fluorescens SBW25.
  • DOI: 10.1099/mic.0.028878-0
    Buch AD, Archana G, Kumar GN (2009). Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene.
  • DOI: 10.1016/j.biortech.2009.08.075
    Buch A, Archana G, Naresh Kumar G (2009). Heterologous expression of phosphoenolpyruvate carboxylase enhances the phosphate solubilizing ability of fluorescent pseudomonads by altering the glucose catabolism to improve biomass yield.
  • DOI: 10.1111/j.1750-3841.2011.02547.x
    Saha R, Bestervelt LL, Donofrio RS (2012). Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments.
  • DOI: 10.1186/1756-0500-5-422
    Azevedo NF, Braganca SM, Simoes LC, Cerqueira L, Almeida C, Keevil CW, Vieira MJ (2012). Proposal for a method to estimate nutrient shock effects in bacteria.
  • DOI: 10.1002/mbo3.32
    Djavaheri M, Mercado-Blanco J, Versluis C, Meyer JM, Loon LC, Bakker PA (2012). Iron-regulated metabolites produced by Pseudomonas fluorescens WCS374r are not required for eliciting induced systemic resistance against Pseudomonas syringae pv. tomato in Arabidopsis.
  • DOI: 10.4315/0362-028X.JFP-13-204
    Shearer AE, Hoover DG, Kniel KE (2014). Effect of bacterial cell-free supernatants on infectivity of norovirus surrogates.
  • DOI: 10.1111/jam.12497
    Alhasawi A, Auger C, Appanna VP, Chahma M, Appanna VD (2014). Zinc toxicity and ATP production in Pseudomonas fluorescens.
  • DOI: 10.1371/journal.pone.0092400
    Yadav K, Kumar C, Archana G, Naresh Kumar G (2014). Pseudomonas fluorescens ATCC 13525 containing an artificial oxalate operon and Vitreoscilla hemoglobin secretes oxalic acid and solubilizes rock phosphate in acidic alfisols.
  • DOI: 10.3168/jds.2014-8611
    Cenci-Goga BT, Karama M, Sechi P, Iulietto MF, Novelli S, Mattei S (2014). Evolution under different storage conditions of anomalous blue coloration of Mozzarella cheese intentionally contaminated with a pigment-producing strain of Pseudomonas fluorescens.
  • DOI: 10.1128/MRA.01368-18
    Meier MJ, Subasinghe RM, Beaudette LA (2018). Draft Genome Sequence of the Industrially Significant Bacterium Pseudomonas fluorescens ATCC 13525.
  • DOI: 10.1094/PDIS-07-12-0668-PDN
    Orio AGA, Brucher E, Plazas MC, Sayago P, Guerra F, De Rossi R, Ducasse DA, Guerra GD (2012). First Report of Stewart's Wilt of Maize in Argentina Caused by Pantoea stewartii.
  • DOI: 10.4315/0362-028X-55.8.627
    Eckner KF (1992). Comparison of Resistance to Microbial Contamination of Conventional and Modified Water Dispensers.
  • DOI: 10.1016/j.heliyon.2019.e01727
    Testa B, Lombardi SJ, Macciola E, Succi M, Tremonte P, Iorizzo M (2019). Efficacy of olive leaf extract (Olea europaea L. cv Gentile di Larino) in marinated anchovies (Engraulis encrasicolus, L.) process.
  • DOI: 10.3390/molecules24183246
    Shu H, Chen H, Wang X, Hu Y, Yun Y, Zhong Q, Chen W, Chen W (2019). Antimicrobial Activity and Proposed Action Mechanism of 3-Carene against Brochothrix thermosphacta and Pseudomonas fluorescens.
  • DOI: 10.3389/fmicb.2020.573857
    Lei L, Chen J, Liao W, Liu P (2020). Determining the Different Mechanisms Used by Pseudomonas Species to Cope With Minimal Inhibitory Concentrations of Zinc via Comparative Transcriptomic Analyses.
  • DOI: 10.3390/plants10040707
    Ovidi E, Laghezza Masci V, Zambelli M, Tiezzi A, Vitalini S, Garzoli S (2021). Laurus nobilis, Salvia sclarea and Salvia officinalis Essential Oils and Hydrolates: Evaluation of Liquid and Vapor Phase Chemical Composition and Biological Activities.
  • DOI: 10.1016/j.micres.2021.126804
    Wu P, Wang Z, Zhu Q, Xie Z, Mei Y, Liang Y, Chen Z (2021). Stress preadaptation and overexpression of rpoS and hfq genes increase stress resistance of Pseudomonas fluorescens ATCC13525.
  • DOI: 10.1080/08927014.2023.2199932
    Xu Y, Zhang T, Che J, Yi J, Wei L, Li H (2023). Evaluation of the antimicrobial mechanism of biogenic selenium nanoparticles against Pseudomonas fluorescens.
  • DOI: 10.3390/microorganisms11092350
    Vollmer T, Knabbe C, Dreier J (2023). Dual-Temperature Microbiological Control of Cellular Products: A Potential Impact for Bacterial Screening of Platelet Concentrates?
  • DOI: 10.3390/foods13020336
    Wang Y, Li X, Zhang G, Bi J, Hou H (2024). Transcriptome Reveals Regulation of Quorum Sensing of Hafnia alvei H4 on the Coculture System of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525.
  • DOI: 10.1016/j.mimet.2024.106956
    Poscente V, Di Gregorio L, Costanzo M, Bernini R, Bevivino A (2024). Flow cytometry: Unravelling the real antimicrobial and antibiofilm efficacy of natural bioactive compounds.
  • DOI: 10.3390/microorganisms12051010
    Beno F, Velkova A, Hruska F, Sevcik R (2024). Use of Lactoperoxidase Inhibitory Effects to Extend the Shelf Life of Meat and Meat Products.
  • DOI: 10.4315/0362-028x-65.7.1179
    Belloque J, Carrascosa AV (2002). Degradation of natural phosphorylated compounds and added polyphosphates in milk by Pseudomonas fluorescens CECT378, Lactococcus lactis CECT539, and Kluyveromyces marxianus CECT10584.
  • DOI: 10.1016/j.jenvman.2010.07.019
    Shilev S, Sancho ED, Benlloch-Gonzalez M (2010). Rhizospheric bacteria alleviate salt-produced stress in sunflower.
  • DOI: 10.1007/s00248-008-9455-y
    Pedersen AL, Nybroe O, Winding A, Ekelund F, Bjornlund L (2008). Bacterial feeders, the nematode Caenorhabditis elegans and the flagellate Cercomonas longicauda, have different effects on outcome of competition among the Pseudomonas biocontrol strains CHA0 and DSS73.
  • DOI: 10.1111/j.1574-6968.2010.02182.x
    Pedersen AL, Winding A, Altenburger A, Ekelund F (2011). Protozoan growth rates on secondary-metabolite-producing Pseudomonas spp. correlate with high-level protozoan taxonomy.
  • DOI: 10.1007/s00216-011-5289-4
    Taubert M, Baumann S, von Bergen M, Seifert J (2011). Exploring the limits of robust detection of incorporation of 13C by mass spectrometry in protein-based stable isotope probing (protein-SIP).
  • DOI: 10.1371/journal.pone.0045306
    Liu M, Bjornlund L, Ronn R, Christensen S, Ekelund F (2012). Disturbance promotes non-indigenous bacterial invasion in soil microcosms: analysis of the roles of resource availability and community structure.
  • DOI: 10.1007/s00705-018-3882-y
    Koberg S, Gieschler S, Brinks E, Wenning M, Neve H, Franz CMAP (2018). Genome sequence of the novel virulent bacteriophage PMBT14 with lytic activity against Pseudomonas fluorescens DSM 50090(R).
  • DOI: 10.1016/j.talanta.2018.12.094
    Klein D, Breuch R, von der Mark S, Wickleder C, Kaul P (2018). Detection of spoilage associated bacteria using Raman-microspectroscopy combined with multivariate statistical analysis.
  • DOI: 10.1186/s13068-019-1397-8
    Ravi K, Abdelaziz OY, Nobel M, Garcia-Hidalgo J, Gorwa-Grauslund MF, Hulteberg CP, Liden G (2019). Bacterial conversion of depolymerized Kraft lignin.
  • DOI: 10.1007/s12010-020-03349-z
    Vindeirinho JM, Soares HMVM, Soares EV (2020). Modulation of Siderophore Production by Pseudomonas fluorescens Through the Manipulation of the Culture Medium Composition.
  • DOI: 10.3389/fmicb.2020.602444
    Low HZ, Bohnlein C, Sprotte S, Wagner N, Fiedler G, Kabisch J, Franz CMAP (2020). Fast and Easy Phage-Tagging and Live/Dead Analysis for the Rapid Monitoring of Bacteriophage Infection.
  • DOI: 10.3389/fchem.2021.666161
    Kjaervik M, Ramstedt M, Schwibbert K, Dietrich PM, Unger WES (2021). Comparative Study of NAP-XPS and Cryo-XPS for the Investigation of Surface Chemistry of the Bacterial Cell-Envelope.
  • DOI: 10.4315/0362-028x-64.6.850
    Belloque J, Carrascosa AV, Lopez-Fandino R (2001). Changes in phosphoglyceride composition during storage of ultrahigh-temperature milk, as assessed by 31P-nuclear magnetic resonance: possible involvement of thermoresistant microbial enzymes.
  • DOI: 10.1002/bit.260240113
    Duddridge JE, Kent CA, Laws JF (1982). Effect of surface shear stress on the attachment of Pseudomonas fluorescens to stainless steel under defined flow conditions.
  • DOI: 10.1002/rcm.2811
    Herrmann AM, Clode PL, Fletcher IR, Nunan N, Stockdale EA, O'Donnell AG, Murphy DV (2007). A novel method for the study of the biophysical interface in soils using nano-scale secondary ion mass spectrometry.
  • DOI: 10.1111/j.1365-2672.2006.02892.x
    Adolphe Y, Jacquot M, Linder M, Revol-Junelles AM, Milliere JB (2006). Optimization of the components concentrations of the lactoperoxidase system by RSM.
  • DOI: 10.3358/shokueishi.50.311
    Kamii E, Isshiki K (2009). [Antimicrobial efficacy of benzyl isothiocyanate].
  • Fomchenkov VM, Kholodenko VP, Irkhina IA, Petrunina TA (1998). [Effect of water pollution by oil and oil products on barrier functions of bacterial cell cytoplasmic membranes].
  • DOI: 10.1093/protein/gzt026
    Suemori A (2013). Conserved and non-conserved residues and their role in the structure and function of p-hydroxybenzoate hydroxylase.
  • DOI: 10.3934/microbiol.2020016
    Fathalla A, Abd El-Mageed A (2020). Salt tolerance enhancement Of wheat (Triticum Asativium L) genotypes by selected plant growth promoting bacteria.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:28303
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license