Strain sc|0036886


StrainInfo: SI-ID 10182 T

Taxon
Streptococcus mutans
Sample
Carious dentine
Cultures (26)
LMG 13654 = ATCC 25175 = CCM 6067 = CCRC 10793 = CCUG 11877 = CCUG 17824 = CCUG 6519 = CECT 479 = CIP 103220 = DSM 20523 = IFO 13955 = JCM 5705 = LMG 14558 = NCFB 2062 = NCTC 10449 = NCDO 2062 = NCIMB 702062 = KCTC 3065 = KCTC 3283 = NBRC 13955 = BCRC 10793 = CCT 3440 = HAMBI 1519 = CNCTC 6699 = CGMCC 1.2499 = VTT E-011803
Other Designations (10)
DSMZ 20523 = CCTM La 2368 = Sims ATCC25175 = CNCTC Str 8/77 = CDC SS 909 = R-4280 = Sims = PCM 2502 = EML 1738 = CCTM 2368
Sequences (45)
Associated Publications (190)
  • DOI: 10.1097/00004770-200112000-00004
    Atac AS, Cehreli ZC, Sener B (2001). Antibacterial activity of fifth-generation dentin bonding systems.
  • Cehreli ZC, Stephan A, Sener B (2003). Antimicrobial properties of self-etching primer-bonding systems.
  • DOI: 10.1016/j.ajodo.2009.05.023
    Baboni FB, Guariza Filho O, Moreno AN, Rosa EAR (2010). Influence of cigarette smoke condensate on cariogenic and candidal biofilm formation on orthodontic materials.
  • DOI: 10.1111/j.1472-765X.2011.03132.x
    Teanpaisan R, Piwat S, Dahlen G (2011). Inhibitory effect of oral Lactobacillus against oral pathogens.
  • DOI: 10.1186/1756-0500-4-406
    Raja AF, Ali F, Khan IA, Shawl AS, Arora DS (2011). Acetyl-11-keto-beta-boswellic acid (AKBA); targeting oral cavity pathogens.
  • DOI: 10.1111/lam.12434
    Piwat S, Sophatha B, Teanpaisan R (2015). An assessment of adhesion, aggregation and surface charges of Lactobacillus strains derived from the human oral cavity.
  • DOI: 10.1007/s10719-017-9795-2
    Ito T, Yoshida Y, Shiota Y, Ito Y, Yamamoto T, Takashiba S (2017). Effects of Lectins on initial attachment of cariogenic Streptococcus mutans.
  • DOI: 10.1080/20002297.2018.1429788
    Muras A, Mayer C, Romero M, Camino T, Ferrer MD, Mira A, Otero A (2018). Inhibition of Steptococcus mutans biofilm formation by extracts of Tenacibaculum sp. 20J, a bacterium with wide-spectrum quorum quenching activity.
  • DOI: 10.1080/09168451.2018.1473026
    Klahan P, Okuyama M, Jinnai K, Ma M, Kikuchi A, Kumagai Y, Tagami T, Kimura A (2018). Engineered dextranase from Streptococcus mutans enhances the production of longer isomaltooligosaccharides.
  • DOI: 10.1186/s12866-018-1369-3
    Fang F, Xu J, Li Q, Xia X, Du G (2018). Characterization of a Lactobacillus brevis strain with potential oral probiotic properties.
  • DOI: 10.1016/j.btre.2018.e00300
    Leathers TD, Rich JO, Bischoff KM, Skory CD, Nunnally MS (2018). Inhibition of Streptococcus mutans and S. sobrinus biofilms by liamocins from Aureobasidium pullulans.
  • DOI: 10.1007/s12602-020-09711-1
    Molham F, Khairalla AS, Azmy AF, El-Gebaly E, El-Gendy AO, AbdelGhani S (2020). Anti-Proliferative and Anti-Biofilm Potentials of Bacteriocins Produced by Non-Pathogenic Enterococcus sp.
  • DOI: 10.1111/jam.15355
    El Aichar F, Muras A, Parga A, Otero A, Nateche F (2021). Quorum quenching and anti-biofilm activities of halotolerant Bacillus strains isolated in different environments in Algeria.
  • Soyer C, Frank RM (1979). [Influence of culture media on the growth of Streptococcus mutans ATCC 25175 in the presence of various carbohydrates and their derivatives].
  • DOI: 10.1111/j.1600-0722.1990.tb00949.x
    Pihlanto-Leppala A, Soderling E, Makinen KK (1990). Expulsion mechanism of xylitol 5-phosphate in Streptococcus mutans.
  • DOI: 10.1111/j.1600-0722.1989.tb00925.x
    Soderling E, Pihlanto-Leppala A (1989). Uptake and expulsion of 14C-xylitol by xylitol-cultured Streptococcus mutans ATCC 25175 in vitro.
  • DOI: 10.1111/j.1399-302x.1997.tb00384.x
    Lenander-Lumikari M, Loimaranta V, Hannuksela S, Tenovuo J, Ekstrand J (1997). Combined inhibitory effect of fluoride and hypothiocyanite on the viability and glucose metabolism of Streptococcus mutans, serotype c.
  • Bettner MD, Beiswanger MA, Miller CH, Palenik CJ (1998). Effect of ultrasonic cleaning on microorganisms.
  • DOI: 10.1034/j.1399-302x.2001.160104.x
    Zhu M, Takenaka S, Sato M, Hoshino E (2001). Influence of starvation and biofilm formation on acid resistance of Streptococcus mutans.
  • DOI: 10.1590/s1517-74912001000100013
    Pedrini D, Gaetti-Jardim Junior E, Mori GG (2001). [Effect of the application of fluoride on the superficial roughness of vitremer glass ionomer cement and microbial adhesion to this material].
  • Guo B, Zhou X, Xiao X, Hu T, Zhu Z, Li L (2001). [Effects of para-aminobenzoic acid (PABA) on growth of Streptococcus mutans].
  • DOI: 10.1046/j.0305-182X.2003.01233.x
    Eick S, Glockmann E, Brandl B, Pfister W (2004). Adherence of Streptococcus mutans to various restorative materials in a continuous flow system.
  • DOI: 10.1016/j.biomaterials.2003.11.031
    Montanaro L, Campoccia D, Rizzi S, Donati ME, Breschi L, Prati C, Arciola CR (2004). Evaluation of bacterial adhesion of Streptococcus mutans on dental restorative materials.
  • DOI: 10.1016/j.jep.2004.03.008
    Limsong J, Benjavongkulchai E, Kuvatanasuchati J (2004). Inhibitory effect of some herbal extracts on adherence of Streptococcus mutans.
  • DOI: 10.1080/08927010400027050
    van Hoogmoed CG, van der Mei HC, Busscher HJ (2004). The influence of biosurfactants released by S. mitis BMS on the adhesion of pioneer strains and cariogenic bacteria.
  • DOI: 10.1159/000084796
    Seemann R, Bizhang M, Kluck I, Loth J, Roulet JF (2005). A novel in vitro microbial-based model for studying caries formation--development and initial testing.
  • Turkun LS, Ates M, Turkun M, Uzer E (2005). Antibacterial activity of two adhesive systems using various microbiological methods.
  • DOI: 10.1021/np050479e
    Liu XT, Pan Q, Shi Y, Williams ID, Sung HH, Zhang Q, Liang JY, Ip NY, Min ZD (2006). ent-rosane and labdane diterpenoids from Sagittaria sagittifolia and their antibacterial activity against three oral pathogens.
  • DOI: 10.1016/j.archoralbio.2006.03.014
    Xiao J, Liu Y, Zuo YL, Li JY, Ye L, Zhou XD (2006). Effects of Nidus Vespae extract and chemical fractions on the growth and acidogenicity of oral microorganisms.
  • Zhao J, Li JY, Zhu B, Zhou XD, Xiao XR (2006). [Study of susceptibility of oral bacteria biofilm to traditional Chinese drug preventing caries].
  • DOI: 10.1016/j.archoralbio.2007.02.009
    Xiao J, Zuo Y, Liu Y, Li J, Hao Y, Zhou X (2007). Effects of Nidus Vespae extract and chemical fractions on glucosyltransferases, adherence and biofilm formation of Streptococcus mutans.
  • DOI: 10.1016/j.ejmech.2007.08.012
    Green IR, Tocoli FE, Lee SH, Nihei K, Kubo I (2007). Design and evaluation of anacardic acid derivatives as anticavity agents.
  • DOI: 10.1080/14622200701705035
    Zonuz AT, Rahmati A, Mortazavi H, Khashabi E, Farahani RM (2008). Effect of cigarette smoke exposure on the growth of Streptococcus mutans and Streptococcus sanguis: an in vitro study.
  • Saravia ME, Nelson-Filho P, da Silva RA, Faria G, Rossi MA, Ito IY (2008). Viability of Streptococcus mutans toothbrush bristles.
  • DOI: 10.3923/pjbs.2008.1336.1341
    Hassani AS, Amirmozafari N, Ordouzadeh N, Hamdi K, Nazari R, Ghaemi A (2008). Volatile components of Camellia sinensis inhibit growth and biofilm formation of oral streptococci in vitro.
  • DOI: 10.1002/jbm.b.31350
    Xiao YH, Ma S, Chen JH, Chai ZG, Li F, Wang YJ (2009). Antibacterial activity and bonding ability of an adhesive incorporating an antibacterial monomer DMAE-CB.
  • DOI: 10.1007/s10856-009-3894-y
    Hahnel S, Henrich A, Rosentritt M, Handel G, Burgers R (2009). Influence of artificial ageing on surface properties and Streptococcus mutans adhesion to dental composite materials.
  • DOI: 10.1016/j.fitote.2009.12.001
    Xia Z, Qu W, Lu H, Fu J, Ren Y, Liang J (2009). Sesquiterpene lactones from Sonchus arvensis L. and their antibacterial activity against Streptococcus mutans ATCC 25175.
  • DOI: 10.1007/s00284-010-9630-5
    Stauder M, Papetti A, Daglia M, Vezzulli L, Gazzani G, Varaldo PE, Pruzzo C (2010). Inhibitory activity by barley coffee components towards Streptococcus mutans biofilm.
  • Liu G, He YH, Zhang FF, Kong XL, Wen YL, Ma QR, Yang YM, Wan HC (2010). [Effects of glycyrrhizic acid on the growth and acid-producing of Streptococcus mutans in vitro].
  • Osorio E, Osorio R, Toledano M, Quevedo-Sarmiento J, Ruiz-Bravo A (2010). Influence of different resin-based restorative materials on mutans streptococci adhesion. An in vitro study.
  • DOI: 10.1007/s12275-011-1002-8
    Kim MJ, Kim CS, Kim BH, Ro SB, Lim YK, Park SN, Cho E, Ko JH, Kwon SS, Ko YM, Kook JK (2011). Antimicrobial effect of Korean propolis against the mutans streptococci isolated from Korean.
  • DOI: 10.1007/s00253-011-3201-y
    Kim YM, Shimizu R, Nakai H, Mori H, Okuyama M, Kang MS, Fujimoto Z, Funane K, Kim D, Kimura A (2011). Truncation of N- and C-terminal regions of Streptococcus mutans dextranase enhances catalytic activity.
  • DOI: 10.1590/s1678-77572011000200010
    Rahim ZH, Thurairajah N (2011). Scanning electron microscopic study of Piper betle L. leaves extract effect against Streptococcus mutans ATCC 25175.
  • DOI: 10.3109/00016357.2011.600703
    Hahnel S, Muhlbauer G, Hoffmann J, Ionescu A, Burgers R, Rosentritt M, Handel G, Haberlein I (2011). Streptococcus mutans and Streptococcus sobrinus biofilm formation and metabolic activity on dental materials.
  • DOI: 10.1590/s1678-77572012000100007
    Bertolini PF, Biondi Filho O, Pomilio A, Pinheiro SL, Carvalho MS (2012). Antimicrobial capacity of Aloe vera and propolis dentifrice against Streptococcus mutans strains in toothbrushes: an in vitro study.
  • DOI: 10.1089/pho.2011.3195
    Araujo NC, Fontana CR, Bagnato VS, Gerbi ME (2012). Photodynamic effects of curcumin against cariogenic pathogens.
  • Topcuoglu N, Ozan F, Ozyurt M, Kulekci G (2012). In vitro antibacterial effects of glass-ionomer cement containing ethanolic extract of propolis on Streptococcus mutans.
  • DOI: 10.1111/adj.12004
    Gonzalez-Perez JC, Scougall-Vilchis RJ, Contreras-Bulnes R, De La Rosa-Gomez I, Uematsu S, Yamaguchi R (2012). Adherence of Streptococcus mutans to orthodontic band cements.
  • DOI: 10.3402/jom.v4i0.19530
    Palmer EA, Vo A, Hiles SB, Peirano P, Chaudhry S, Trevor A, Kasimi I, Pollard J, Kyles C, Leo M, Wilmot B, Engle J, Peterson J, Maier T, Machida CA (2012). Mutans streptococci genetic strains in children with severe early childhood caries: follow-up study at one-year post-dental rehabilitation therapy.
  • Sakagami H, Amano S, Yasui T, Satoh K, Shioda S, Kanamoto T, Terakubo S, Nakashima H, Watanabe K, Sugiura T, Kitajima M, Oizumi H, Oizumi T (2013). Biological interaction between Sasa senanensis Rehder leaf extract and toothpaste ingredients.
  • DOI: 10.1007/s12272-013-0085-7
    Joycharat N, Thammavong S, Limsuwan S, Homlaead S, Voravuthikunchai SP, Yingyongnarongkul BE, Dej-Adisai S, Subhadhirasakul S (2013). Antibacterial substances from Albizia myriophylla wood against cariogenic Streptococcus mutans.
  • DOI: 10.2319/020413-101.1
    Hatunoglu E, Ozturk F, Bilenler T, Aksakalli S, Simsek N (2013). Antibacterial and mechanical properties of propolis added to glass ionomer cement.
  • Srinivasan S, Chandrasekhar S, Shashikumar KV, Payne D, Maclure R, Kapadiya B, Schafer F, Adams S (2013). Plaque triclosan concentration and antimicrobial efficacy of a new calcium carbonate toothpaste with 0.3% triclosan compared to a marketed 0.3% triclosan toothpaste.
  • DOI: 10.1155/2014/384815
    Herrera Herrera A, Franco Ospina L, Fang L, Diaz Caballero A (2014). Susceptibility of Porphyromonas gingivalis and Streptococcus mutans to Antibacterial Effect from Mammea americana.
  • DOI: 10.1590/0103-6440201302257
    de Andrade FB, de Oliveira JC, Yoshie MT, Guimaraes BM, Goncalves RB, Schwarcz WD (2014). Antimicrobial activity and synergism of lactoferrin and lysozyme against cariogenic microorganisms.
  • DOI: 10.7518/hxkq.2014.04.020
    Liu X, Liu Y, Liang J, Shi L, Chu J, Li B (2014). [In vitro study of the effect of a lactoperoxidase-peroxidase-thiocyanate system with iodine on the cariogenicinity of streptococcus mutans].
  • DOI: 10.5005/jp-journals-10005-1241
    Juntavee A, Peerapattana J, Ratanathongkam A, Nualkaew N, Chatchiwiwattana S, Treesuwan P (2014). The Antibacterial Effects of Apacaries Gel on Streptococcus mutans: An in vitro Study.
  • DOI: 10.5301/jabfm.5000212
    Sungurtekin-Ekci E, Ozdemir-Ozenen D, Duman S, Acuner IC, Sandalli N (2015). Antibacterial surface properties of various fluoride-releasing restorative materials in vitro.
  • DOI: 10.1111/1348-0421.12214
    Otsuka R, Imai S, Murata T, Nomura Y, Okamoto M, Tsumori H, Kakuta E, Hanada N, Momoi Y (2015). Application of chimeric glucanase comprising mutanase and dextranase for prevention of dental biofilm formation.
  • DOI: 10.1111/j.2041-1626.2011.00058.x
    do Rosario Junior AF, Knop LA, Baboni FB, Rymovicz AU, Tanaka OM, Rosa EA (2011). Differential adhesion of Streptococcus mutans to metallic brackets induced by saliva from caries-free and caries-active individuals.
  • DOI: 10.3390/molecules200813705
    Dziedzic A, Wojtyczka RD, Kubina R (2015). Inhibition of Oral Streptococci Growth Induced by the Complementary Action of Berberine Chloride and Antibacterial Compounds.
  • DOI: 10.1016/j.archoralbio.2016.02.001
    Cardoso JG, Iorio NL, Rodrigues LF, Couri ML, Farah A, Maia LC, Antonio AG (2016). Influence of a Brazilian wild green propolis on the enamel mineral loss and Streptococcus mutans' count in dental biofilm.
  • DOI: 10.3892/br.2016.603
    Wang LF, Luo F, Xue CR, Deng M, Chen C, Wu H (2016). Antibacterial effect and shear bond strength of an orthodontic adhesive cement containing Galla chinensis extract.
  • DOI: 10.5005/jp-journals-10005-1345
    Hugar SM, Assudani HG, Patil V, Kukreja P, Uppin C, Thakkar P (2016). Comparative Evaluation of the Antibacterial Efficacy of Type II Glass lonomer Cement, Type IX Glass lonomer Cement, and AMALGOMER Ceramic Reinforcement by Modified "Direct Contact Test": An in vitro Study.
  • DOI: 10.7717/peerj.2519
    Shafiei Z, Haji Abdul Rahim Z, Philip K, Thurairajah N (2016). Antibacterial and anti-adherence effects of a plant extract mixture (PEM) and its individual constituent extracts (Psidium sp., Mangifera sp., and Mentha sp.) on single- and dual-species biofilms.
  • DOI: 10.1080/14786419.2016.1263847
    Lall N, Kishore N, Bodiba D, More G, Tshikalange E, Kikuchi H, Oshima Y (2016). Alkaloids from aerial parts of Annona senegalensis against Streptococcus mutans.
  • DOI: 10.3390/ijms18040713
    Jiang S, Chen S, Zhang C, Zhao X, Huang X, Cai Z (2017). Effect of the Biofilm Age and Starvation on Acid Tolerance of Biofilm Formed by Streptococcus mutans Isolated from Caries-Active and Caries-Free Adults.
  • DOI: 10.1016/j.pdpdt.2017.04.004
    Leal CRL, Alvarenga LH, Oliveira-Silva T, Kato IT, Godoy-Miranda B, Bussadori SK, Ribeiro MS, Prates RA (2017). Antimicrobial photodynamic therapy on Streptococcus mutans is altered by glucose in the presence of methylene blue and red LED.
  • DOI: 10.1016/j.jdent.2017.06.006
    Arias-Moliz MT, Farrugia C, Lung CYK, Wismayer PS, Camilleri J (2017). Antimicrobial and biological activity of leachate from light curable pulp capping materials.
  • DOI: 10.1016/j.archoralbio.2017.10.013
    Limsuwan S, Moosigapong K, Jarukitsakul S, Joycharat N, Chusri S, Jaisamut P, Voravuthikunchai SP (2017). Lupinifolin from Albizia myriophylla wood: A study on its antibacterial mechanisms against cariogenic Streptococcus mutans.
  • DOI: 10.1155/2017/2152749
    Ferrazzano GF, Scioscia E, Sateriale D, Pastore G, Colicchio R, Pagliuca C, Cantile T, Alcidi B, Coda M, Ingenito A, Scaglione E, Cicatiello AG, Volpe MG, Di Stasio M, Salvatore P, Pagliarulo C (2017). In Vitro Antibacterial Activity of Pomegranate Juice and Peel Extracts on Cariogenic Bacteria.
  • DOI: 10.1016/j.archoralbio.2018.01.004
    Fernandez-Presas AM, Marquez Torres Y, Garcia Gonzalez R, Reyes Torres A, Becker Fauser I, Rodriguez Barrera H, Ruiz Garcia B, Toloza Medina R, Delgado Dominguez J, Molinari Soriano JL (2018). Ultrastructural damage in Streptococcus mutans incubated with saliva and histatin 5.
  • DOI: 10.1016/j.prosdent.2017.09.015
    Andrade V, Martinez A, Rojas N, Bello-Toledo H, Flores P, Sanchez-Sanhueza G, Catalan A (2018). Antibacterial activity against Streptococcus mutans and diametrical tensile strength of an interim cement modified with zinc oxide nanoparticles and terpenes: An in vitro study.
  • DOI: 10.1016/j.ijbiomac.2018.03.016
    Li FL, Shi Y, Zhang JX, Gao J, Zhang YW (2018). Cloning, expression, characterization and homology modeling of a novel water-forming NADH oxidase from Streptococcus mutans ATCC 25175.
  • DOI: 10.1016/j.archoralbio.2018.04.008
    Vieira TI, Camara JVF, Cardoso JG, Alexandria AK, Pintor AVB, Villaca JC, Cabral LM, Romanos MTV, Fonseca-Goncalves A, Valenca AMG, Maia LC (2018). Cytotoxicity of novel fluoride solutions and their influence on mineral loss from enamel exposed to a Streptococcus mutans biofilm.
  • DOI: 10.1186/s12906-018-2213-x
    Gartika M, Pramesti HT, Kurnia D, Satari MH (2018). A terpenoid isolated from sarang semut (Myrmecodia pendans) bulb and its potential for the inhibition and eradication of Streptococcus mutans biofilm.
  • DOI: 10.1016/j.archoralbio.2018.05.017
    Martins ML, Leite KLF, Pacheco-Filho EF, Pereira AFM, Romanos MTV, Maia LC, Fonseca-Goncalves A, Padilha WWN, Cavalcanti YW (2018). Efficacy of red propolis hydro-alcoholic extract in controlling Streptococcus mutans biofilm build-up and dental enamel demineralization.
  • Braga AS, Degand GB, Pires JG, Santos DMSD, Magalhaes AC (2018). Effect of oral antimicrobial mouthrinses containing alcohol on viability of Streptococcus mutans and microcosm biofilm and on the prevention of enamel caries lesions.
  • DOI: 10.1080/14786419.2018.1550757
    Vargas-Segura AI, Silva-Belmares SY, Segura-Ceniceros EP, Ascacio-Valdes JA, Mendez-Gonzalez L, Ilyina A (2019). Screening and characterization of medicinal plants extracts with bactericidal activity against Streptococcus mutans.
  • DOI: 10.1155/2018/2714350
    Coronado-Lopez S, Caballero-Garcia S, Aguilar-Luis MA, Mazulis F, Del Valle-Mendoza J (2018). Antibacterial Activity and Cytotoxic Effect of Pelargonium peltatum (Geranium) against Streptococcus mutans and Streptococcus sanguinis.
  • DOI: 10.1155/2019/4292976
    Meza-Siccha AS, Aguilar-Luis MA, Silva-Caso W, Mazulis F, Barragan-Salazar C, Del Valle-Mendoza J (2019). In Vitro Evaluation of Bacterial Adhesion and Bacterial Viability of Streptococcus mutans, Streptococcus sanguinis, and Porphyromonas gingivalis on the Abutment Surface of Titanium and Zirconium Dental Implants.
  • DOI: 10.1055/s-0039-1693748
    Elgamily H, Safwat E, Soliman Z, Salama H, El-Sayed H, Anwar M (2019). Antibacterial and Remineralization Efficacy of Casein Phosphopeptide, Glycomacropeptide Nanocomplex, and Probiotics in Experimental Toothpastes: An In Vitro Comparative Study.
  • DOI: 10.17796/1053-4625-43.6.7
    Abu-Obaid E, Salama F, Abu-Obaid A, Alanazi F, Salem M, Auda S (2019). Comparative Evaluation of the Antimicrobial Effects of Different Mouthrinses against Streptococcus Mutans: An in Vitro Study.
  • DOI: 10.3390/molecules24224043
    Alexa VT, Galuscan A, Popescu I, Tirziu E, Obistioiu D, Floare AD, Perdiou A, Jumanca D (2019). Synergistic/Antagonistic Potential of Natural Preparations Based on Essential Oils Against Streptococcus mutans from the Oral Cavity.
  • DOI: 10.1111/lam.13265
    Kokilakanit P, Koontongkaew S, Roytrakul S, Utispan K (2020). A novel non-cytotoxic synthetic peptide, Pug-1, exhibited an antibiofilm effect on Streptococcus mutans adhesion.
  • DOI: 10.3390/polym12061218
    Dima S, Lee YY, Watanabe I, Chang WJ, Pan YH, Teng NC (2020). Antibacterial Effect of the Natural Polymer epsilon-Polylysine Against Oral Pathogens Associated with Periodontitis and Caries.
  • DOI: 10.1038/s41598-020-67775-z
    Angarita-Diaz MDP, Arias JC, Bedoya-Correa C, Cepeda MJ, Arboleda MF, Chacon JM, Leal Y (2020). The effect of commercial functional food with probiotics on microorganisms from early carious lesions.
  • DOI: 10.2174/1570163817666200712171652
    Herdiyati Y, Astrid Y, Shadrina AAN, Wiani I, Satari MH, Kurnia D (2021). Potential Fatty Acid as Antibacterial Agent Against Oral Bacteria of Streptococcus mutans and Streptococcus sanguinis from Basil (Ocimum americanum): In vitro and In silico Studies.
  • DOI: 10.1089/photob.2019.4796
    Kim Y, Park H, Lee J, Seo H, Lee S (2020). Effect of Indocyanine Green and Infrared Diode Laser to Streptococcus mutans Biofilms.
  • DOI: 10.1155/2020/8856382
    Enciso S, Medina J, Mauricio F, Mauricio-Vilchez C, Alvitez-Temoche D, Vilchez L, Mayta-Tovalino F (2020). Antibacterial Effectiveness of Four Concentrations of the Hydroalcoholic Extract of Solanum tuberosum (Tocosh) against Streptococcus mutans ATCC 25175(TM): A Comparative In Vitro Study.
  • DOI: 10.7717/peerj.10165
    Juntarachot N, Sirilun S, Kantachote D, Sittiprapaporn P, Tongpong P, Peerajan S, Chaiyasut C (2020). Anti-Streptococcus mutans and anti-biofilm activities of dextranase and its encapsulation in alginate beads for application in toothpaste.
  • DOI: 10.1016/j.micpath.2020.104669
    Filho JG, Vizoto NL, Luiza de Aguiar Loesch M, Dias de Sena M, Mendes da Camara D, Caiaffa KS, de Oliveira Mattos-Graner R, Duque C (2020). Genetic and physiological effects of subinhibitory concentrations of oral antimicrobial agents on Streptococcus mutans biofilms.
  • DOI: 10.4103/jispcd.JISPCD_237_20
    Loyola D, Mendoza R, Chiong L, Rueda M, Alvitez-Temoche D, Gallo W, Mayta-Tovalino F (2020). Ethanol extract of Schinus molle L. (Molle) and Erythroxylum coca Lam (Coca): Antibacterial Properties at Different Concentrations against Streptococcus mutans: An In Vitro Study.
  • DOI: 10.1007/s10103-021-03300-6
    Moro GG, Massat NC, Grandizoli DRP, Junior AE, Degasperi GR, Fontana CE, Pinheiro SL (2021). Effect of cetrimide 2% with and without photodynamic therapy to reduce Streptococcus mutans burden in dentinal carious lesions.
  • DOI: 10.1111/iej.13592
    Silva PAO, Lima SMF, Martins DCM, Amorim IA, Lacorte C, de Almeida JA, Franco OL, Rezende TMB (2021). Concentrated MTA Repair HP reduced biofilm and can cause reparative action at a distance.
  • DOI: 10.1016/j.pdpdt.2022.102718
    Fernandes FGL, de Moraes FB, De Cezare JA, Degasperi GR, Fontana CE, Grandizoli DRP, Pinheiro SL (2022). In vitro evaluation of EDTA combined with photodynamic therapy to reduce Streptococcus mutans in carious dentin.
  • DOI: 10.1016/j.micpath.2022.105390
    OmerOglou E, Karaca B, Kibar H, Haliscelik O, Kiran F (2022). The role of microbiota-derived postbiotic mediators on biofilm formation and quorum sensing-mediated virulence of Streptococcus mutans: A perspective on preventing dental caries.
  • DOI: 10.2334/josnusd.21-0521
    Koike M, Mitchell RJ, Horie T, Hummel SK, Okabe T (2022). Biofilm accumulation on additive manufactured Ti-6Al-4V alloy surfaces.
  • DOI: 10.1016/j.sdentj.2022.03.008
    Barcellos Fernandes R, Barbara Polo A, Novaes Rocha V, Willer Farinazzo Vitral R, Carolina Morais Apolonio A, Jose da Silva Campos M (2022). Influence of orthodontic brackets design and surface properties on the cariogenic Streptococcus mutans adhesion.
  • DOI: 10.1021/acsomega.2c02776
    Chittratan P, Chalitangkoon J, Wongsariya K, Mathaweesansurn A, Detsri E, Monvisade P (2022). New Chitosan-Grafted Thymol Coated on Gold Nanoparticles for Control of Cariogenic Bacteria in the Oral Cavity.
  • DOI: 10.1016/j.jmbbm.2022.105511
    Rodrigues RAA, Silva RMFDCE, Ferreira LAQ, Branco NTT, Avila ES, Peres AM, Fernandes-Braga W, Sette-Dias AC, Andrade AL, Palma-Dibb RG, Magalhaes CS, Ladeira LO, Silveira RRD, Moreira AN, Martins Junior PA, Yamauti M, Diniz IMA (2022). Enhanced mechanical properties, anti-biofilm activity, and cytocompatibility of a methacrylate-based polymer loaded with native multiwalled carbon nanotubes.
  • DOI: 10.61872/sdj-2023-03-01
    Koegel S, Braissant O, Waltimo T, Bornstein MM, Astasov-Frauenhoffer M (2022). Evaluation of antibacterial properties of fluoride-containing mouth rinses differing in their acidic compound using a Streptococcus mutans biofilm.
  • DOI: 10.1021/acsabm.2c00644
    Malik Z, Muhammad N, Kaleem M, Nayyar M, Qazi AS, Butt DQ, Safi SZ, Khan AS (2023). Anticariogenic and Mechanical Characteristics of Resin-Modified Glass Ionomer Cement Containing Lignin-Decorated Zinc Oxide Nanoparticles.
  • DOI: 10.18502/ijm.v14i6.11260
    Mahmoud S, Gaber Y, Khattab RA, Bakeer W, Dishisha T, Ramadan MA (2022). The inhibitory effect of dextranases from Bacillus velezensis and Pseudomonas stutzeri on Streptococcus mutans biofilm.
  • DOI: 10.1155/2023/8890750
    Haniastuti T, Puspasari TA, Hakim ER, Tandelilin RT (2023). Potential Effect of Giant Freshwater Prawn Shell Nano Chitosan in Inhibiting the Development of Streptococcus mutans and Streptococcus sanguinis Biofilm In Vitro.
  • DOI: 10.3390/antibiotics12020369
    Landeo-Villanueva GE, Salazar-Salvatierra ME, Ruiz-Quiroz JR, Zuta-Arriola N, Jarama-Soto B, Herrera-Calderon O, Pari-Olarte JB, Loyola-Gonzales E (2023). Inhibitory Activity of Essential Oils of Mentha spicata and Eucalyptus globulus on Biofilms of Streptococcus mutans in an In Vitro Model.
  • DOI: 10.3390/polym15041047
    Hamouda RA, Qarabai FAK, Shahabuddin FS, Al-Shaikh TM, Makharita RR (2023). Antibacterial Activity of Ulva/Nanocellulose and Ulva/Ag/Cellulose Nanocomposites and Both Blended with Fluoride against Bacteria Causing Dental Decay.
  • DOI: 10.4103/njcp.njcp_406_22
    Maher YA, Rajeh MT, Hamooda FA, Zerain GO, Habis RM, Sulaimani RH, Albar ST, H Ali FM, Abdelaleem NA (2023). Evaluation of the clinical impact and In Vitro antibacterial activities of two bioactive restoratives against S. mutans ATCC 25175 in class II carious restorations.
  • DOI: 10.3390/jfb14060302
    Magalhaes GAP, Thomson JJ, Smoczer C, Young LA, Matos AO, Pacheco RR, Souza MT, Zanotto ED, Puppin Rontani RM (2023). Effect of Biosilicate((R)) Addition on Physical-Mechanical and Biological Properties of Dental Glass Ionomer Cements.
  • DOI: 10.1080/20002297.2024.2304971
    Reichardt E, Shyp V, Alig L, Verna C, Kulik EM, Bornstein MM (2024). Antimicrobial effect of probiotic bacteriocins on Streptococcus mutans biofilm in a dynamic oral flow chamber model - an in vitro study.
  • DOI: 10.1016/j.bmcl.2024.129737
    Tan H, Lee HJ, Hillman PF, Lee EY, Lee C, Seo EK, Lee MJ, Nam SJ (2024). The discovery of an anti-inflammatory monoterpenoid, neoroseoside from the Zea mays.
  • DOI: 10.1016/j.jtemb.2024.127448
    Si B, Yang Y, Naveed M, Wang F, Chan MWH (2024). Characterizations of biogenic selenium nanoparticles and their anti-biofilm potential against Streptococcus mutans ATCC 25175.
  • DOI: 10.3390/ijerph17239106
    Nardi GM, Fais S, Casu C, Mazur M, Di Giorgio R, Grassi R, Grassi FR, Orru G (2020). Mouthwash Based on Ozonated Olive Oil in Caries Prevention: A Preliminary In-Vitro Study.
  • Lembke A, Pause B (1989). [Anticaries effectiveness of D(+)-galactose].
  • DOI: 10.1007/s00784-011-0568-1
    Schuler V, Lussi A, Kage A, Seemann R (2011). Glycan-binding specificities of Streptococcus mutans and Streptococcus sobrinus lectin-like adhesins.
  • DOI: 10.1590/1678-775720130017
    Schmidt JC, Bux M, Filipuzzi-Jenny E, Kulik EM, Waltimo T, Weiger R, Walter C (2014). Influence of time, toothpaste and saliva in the retention of Streptococcus mutans and Streptococcus sanguinis on different toothbrushes.
  • DOI: 10.1007/s00784-017-2184-1
    Kramer N, Schmidt M, Lucker S, Domann E, Frankenberger R (2017). Glass ionomer cement inhibits secondary caries in an in vitro biofilm model.
  • DOI: 10.1017/S0007114520001956
    Salli K, Soderling E, Hirvonen J, Gursoy UK, Ouwehand AC (2020). Influence of 2'-fucosyllactose and galacto-oligosaccharides on the growth and adhesion of Streptococcus mutans.
  • DOI: 10.1016/s0142-9612(97)88072-6
    Syafiuddin T, Hisamitsu H, Toko T, Igarashi T, Goto N, Fujishima A, Miyazaki T (1997). In vitro inhibition of caries around a resin composite restoration containing antibacterial filler.
  • DOI: 10.1007/s12602-017-9311-9
    Zoumpopoulou G, Tzouvanou A, Mavrogonatou E, Alexandraki V, Georgalaki M, Anastasiou R, Papadelli M, Manolopoulou E, Kazou M, Kletsas D, Papadimitriou K, Tsakalidou E (2018). Probiotic Features of Lactic Acid Bacteria Isolated from a Diverse Pool of Traditional Greek Dairy Products Regarding Specific Strain-Host Interactions.
  • DOI: 10.1111/j.1399-302X.2006.00289.x
    Nakajo K, Komori R, Ishikawa S, Ueno T, Suzuki Y, Iwami Y, Takahashi N (2006). Resistance to acidic and alkaline environments in the endodontic pathogen Enterococcus faecalis.
  • DOI: 10.1128/iai.25.1.304-309.1979
    Pruitt KM, Adamson M, Arnold R (1979). Lactoperoxidase binding to streptococci.
  • DOI: 10.1128/iai.19.3.934-942.1978
    Calmes R (1978). Involvement of phosphoenolpyruvate in the catabolism of caries-conducive disaccharides by Streptococcus mutans: lactose transport.
  • DOI: 10.1128/iai.24.3.821-828.1979
    Slee AM, Tanzer JM (1979). Phosphoenolpyruvate-dependent sucrose phosphotransferase activity in Streptococcus mutans NCTC 10449.
  • DOI: 10.1128/AAC.16.1.9
    Simonson LG, Jackola D (1979). Effects of dextranases on attachment of Streptococcus mutans to hydroxyapatite.
  • DOI: 10.1111/j.1348-0421.1979.tb00469.x
    Inoue M, Hamada S, Ooshima T, Kotani S, Kato K (1979). Chemical composition of Streptococcus mutans cell walls and their susceptibility to Flavobacterium L-11 enzyme.
  • DOI: 10.1177/00220345760550012801
    Osborne RM, Lamberts BL, Meyer TS, Roush AH (1976). Acrylamide gel electrophoretic studies of extracellular sucrose-metabolizing enzymes of Streptococcus mutans.
  • DOI: 10.1128/iai.12.1.69-75.1975
    Michalek SM, McGhee JR, Navia JM (1975). Virulence of Streptococcus mutans: a sensitive method for evaluating cariogenicity in young gnotobiotic rats.
  • DOI: 10.1111/j.1365-2591.1992.tb00777.x
    Watts A, Paterson RC (1992). Pulp response to, and cariogenicity of, a further strain of Streptococcus mutans (NCTC 10832).
  • DOI: 10.1177/00220345920710031201
    Lenander-Lumikari M, Mansson-Rahemtulla B, Rahemtulla F (1992). Lysozyme enhances the inhibitory effects of the peroxidase system on glucose metabolism of Streptococcus mutans.
  • DOI: 10.1159/000261232
    Bush MS, Challacombe SJ, Newman HN (1990). A method for the identification of Streptococcus mutans in gingival margin plaque by immunofluorescence.
  • DOI: 10.1159/000261406
    Watson GK, Cummins D, van der Ouderaa FJ (1991). Inhibition of acid production by Streptococcus mutans NCTC 10449 by zinc and the effect of metal speciation.
  • Einwag J, Ulrich A, Gehring F (1990). [In-vitro plaque accumulation on different filling materials].
  • DOI: 10.1007/BF00403160
    van der Hoeven JS, Hoogendoorn H (1990). Uptake of oxygen, release and degradation of hydrogen peroxide by Streptococcus mutans NCTC 10449.
  • DOI: 10.1007/BF02024720
    Ziesenitz SC, Siebert G (1988). Uptake of saccharin and related intense sweeteners by Streptococcus mutans NCTC 10449.
  • DOI: 10.1111/j.1365-2591.1989.tb00498.x
    Paterson RC, Watts A (1989). Pulp response to, and cariogenicity of, a strain of Streptococcus mutans.
  • DOI: 10.1016/0003-9969(89)90034-4
    Willcox MD, Drucker DB, Green RM (1989). Comparative cariogenicity and dental plaque-forming ability in gnotobiotic rats of four species of mutans streptococci.
  • DOI: 10.1159/000261187
    Distler W, Kagermeier A, Hickel R, Kroncke A (1989). Lactate influx and efflux in the 'Streptococcus mutants group' and Streptococcus sanguis.
  • DOI: 10.1177/00220345870660021701
    Mansson-Rahemtulla B, Baldone DC, Pruitt KM, Rahemtulla F (1987). Effects of variations in pH and hypothiocyanite concentrations on S. mutans glucose metabolism.
  • DOI: 10.1016/0003-9969(88)90001-5
    Brack CM, Reynolds EC (1988). Colonization of rat molar teeth by mutans streptococci with different salivary agglutination characteristics.
  • DOI: 10.1093/jn/117.5.846
    Ziesenitz SC, Siebert G (1987). In vitro assessment of nystose as a sugar substitute.
  • DOI: 10.1128/iai.55.5.1264-1273.1987
    Brack CM, Reynolds EC (1987). Characterization of a rat salivary sialoglycoprotein complex which agglutinates Streptococcus mutans.
  • Adriaens PA, Claeys GW, De Boever JA (1987). Scanning electron microscopy of dentin caries. Experimental in vitro studies with Streptococcus mutans.
  • DOI: 10.1099/00222615-22-4-319
    Wade WG, Aldred MJ, Walker DM (1986). An improved medium for isolation of Streptococcus mutans.
  • DOI: 10.1128/iai.49.3.674-678.1985
    Carlsson J, Kujala U, Edlund MB (1985). Pyruvate dehydrogenase activity in Streptococcus mutans.
  • DOI: 10.1128/jb.110.2.604-615.1972
    Brown AT, Wittenberger CL (1972). Fructose-1,6-diphosphate-dependent lactate dehydrogenase from a cariogenic streptococcus: purification and regulatory properties.
  • Meikle MC, Gowen M, Reynolds JJ (1982). Effect of streptococcal cell wall components on bone metabolism in vitro.
  • DOI: 10.1016/0003-9969(83)90089-4
    Vadeboncoeur C, Trahan L (1983). Heterofermentative glucose metabolism by glucose transport-impaired mutants of oral streptococcal bacteria during growth in batch culture.
  • DOI: 10.1128/iai.35.3.792-799.1982
    Arnold RR, Russell JE, Champion WJ, Brewer M, Gauthier JJ (1982). Bactericidal activity of human lactoferrin: differentiation from the stasis of iron deprivation.
  • Tenovuo J, Moldoveanu Z, Mestecky J, Pruitt KM, Rahemtulla BM (1982). Interaction of specific and innate factors of immunity: IgA enhances the antimicrobial effect of the lactoperoxidase system against Streptococcus mutans.
  • DOI: 10.1177/00220345950740091801
    Iwami Y, Schachtele CF, Yamada T (1995). Effect of sucrose monolaurate on acid production, levels of glycolytic intermediates, and enzyme activities of Streptococcus mutans NCTC 10449.
  • DOI: 10.1159/000262015
    Roger V, Tenovuo J, Lenander-Lumikari M, Soderling E, Vilja P (1994). Lysozyme and lactoperoxidase inhibit the adherence of Streptococcus mutans NCTC 10449 (serotype c) to saliva-treated hydroxyapatite in vitro.
  • DOI: 10.1159/000261997
    Scheie AA, Pearce EI (1994). The effect of mineral-derived zinc ions on in vitro glucose metabolism of Streptococcus mutans NCTC 10449.
  • DOI: 10.1128/iai.61.1.295-302.1993
    Homer KA, Patel R, Beighton D (1993). Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC 10449 and Streptococcus sobrinus SL-1.
  • DOI: 10.1159/000261511
    van der Hoeven JS, Camp PJ (1993). Mixed continuous cultures of Streptococcus mutans with Streptococcus sanguis or with Streptococcus oralis as a model to study the ecological effects of the lactoperoxidase system.
  • DOI: 10.1111/j.1399-302x.1997.tb00621.x
    Iwami Y, Guha-Chowdhury N, Yamada T (1997). Effect of sodium and potassium ions on intracellular pH and proton excretion in glycolyzing cells of Streptococcus mutans NCTC 10449 under strictly anaerobic conditions.
  • DOI: 10.1159/000262421
    Guha-Chowdhury N, Iwami Y, Yamada T (1997). Effect of low levels of fluoride on proton excretion and intracellular pH in glycolysing streptococcal cells under strictly anaerobic conditions.
  • DOI: 10.1111/j.1399-302x.1996.tb00204.x
    Carlsson J, Hamilton IR (1996). Differential toxic effects of lactate and acetate on the metabolism of Streptococcus mutans and Streptococcus sanguis.
  • DOI: 10.1111/j.1399-302x.1997.tb00376.x
    Iwami Y, Guha-Chowdhury N, Yamada T (1997). Mechanism of inhibition of acid production in Streptococcus mutans by sodium ions under strictly anaerobic conditions.
  • DOI: 10.1111/j.1834-7819.2002.tb00298.x
    Wan AK, Seow WK, Walsh LJ, Bird PS (2002). Comparison of five selective media for the growth and enumeration of Streptococcus mutans.
  • DOI: 10.1016/s0300-5712(02)00046-5
    Radcliffe CE, Akram NC, Hurrell F, Drucker DB (2002). Effects of nitrite and nitrate on the growth and acidogenicity of Streptococcus mutans.
  • DOI: 10.1016/s0300-5712(03)00006-x
    Ozer F, Karakaya S, Unlu N, Erganis O, Kav K, Imazato S (2003). Comparison of antibacterial activity of two dentin bonding systems using agar well technique and tooth cavity model.
  • DOI: 10.1159/000070443
    Williams JA, Pearson GJ, Colles MJ, Wilson M (2003). The effect of variable energy input from a novel light source on the photoactivated bactericidal action of toluidine blue O on Streptococcus Mutans.
  • DOI: 10.1016/s0300-5712(03)00066-6
    Radcliffe CE, Lamb R, Blinkhorn AS, Drucker DB (2003). Effect of sodium nitrite and ascorbic acid on the growth and acid production of Streptococcus mutans.
  • DOI: 10.1159/000079623
    Giertsen E (2004). Effects of mouthrinses with triclosan, zinc ions, copolymer, and sodium lauryl sulphate combined with fluoride on acid formation by dental plaque in vivo.
  • Ozer F, Unlu N, Karakaya S, Ergani O, Hadimli HH (2005). Antibacterial activities of MDPB and fluoride in dentin bonding agents.
  • DOI: 10.1159/000088190
    Maehara H, Iwami Y, Mayanagi H, Takahashi N (2005). Synergistic inhibition by combination of fluoride and xylitol on glycolysis by mutans streptococci and its biochemical mechanism.
  • DOI: 10.1128/iai.10.5.985-990.1974
    Fukui K, Fukui Y, Moriyama T (1974). Some Immunochemical Properties of Dextransucrase and Invertase from Streptococcus mutans.
  • DOI: 10.1111/j.1399-302X.2006.00273.x
    Miyasawa-Hori H, Aizawa S, Takahashi N (2006). Difference in the xylitol sensitivity of acid production among Streptococcus mutans strains and the biochemical mechanism.
  • DOI: 10.1002/jbm.b.30985
    Rosentritt M, Hahnel S, Groger G, Muhlfriedel B, Burgers R, Handel G (2008). Adhesion of Streptococcus mutans to various dental materials in a laminar flow chamber system.
  • DOI: 10.1007/s00284-007-9076-6
    Soderling EM, Ekman TC, Taipale TJ (2008). Growth inhibition of Streptococcus mutans with low xylitol concentrations.
  • DOI: 10.1007/s10856-007-3352-7
    Hahnel S, Rosentritt M, Burgers R, Handel G (2008). Surface properties and in vitro Streptococcus mutans adhesion to dental resin polymers.
  • DOI: 10.1016/j.jdent.2008.08.004
    Hahnel S, Rosentritt M, Handel G, Burgers R (2008). Influence of saliva substitute films on initial Streptococcus mutans adhesion to enamel and dental substrata.
  • DOI: 10.1016/S0022-3913(08)60212-7
    Hahnel S, Rosentritt M, Burgers R, Handel G (2008). Adhesion of Streptococcus mutans NCTC 10449 to artificial teeth: an in vitro study.
  • DOI: 10.1016/j.dental.2008.10.014
    Nakajo K, Imazato S, Takahashi Y, Kiba W, Ebisu S, Takahashi N (2009). Fluoride released from glass-ionomer cement is responsible to inhibit the acid production of caries-related oral streptococci.
  • DOI: 10.1016/j.jdent.2009.02.004
    Johansson E, Claesson R, van Dijken JW (2009). Antibacterial effect of ozone on cariogenic bacterial species.
  • Hahnel S, Leyer A, Rosentritt M, Handel G, Burgers R (2009). Surface properties and in vitro Streptococcus mutans adhesion to self-etching adhesives.
  • DOI: 10.1007/s00284-010-9752-9
    Soderling EM, Marttinen AM, Haukioja AL (2010). Probiotic lactobacilli interfere with Streptococcus mutans biofilm formation in vitro.
  • DOI: 10.1177/0022034511423392
    Mayanagi G, Igarashi K, Washio J, Nakajo K, Domon-Tawaraya H, Takahashi N (2011). Evaluation of pH at the bacteria-dental cement interface.
  • DOI: 10.1159/000354048
    Valappil SP, Owens GJ, Miles EJ, Farmer NL, Cooper L, Miller G, Clowes R, Lynch RJ, Higham SM (2013). Effect of gallium on growth of Streptococcus mutans NCTC 10449 and dental tissues.
  • DOI: 10.1099/ijsem.0.001280
    Shinozaki-Kuwahara N, Saito M, Hirasawa M, Hirasawa M, Takada K (2016). Streptococcusdentiloxodontae sp. nov., isolated from the oral cavity of elephants.
  • DOI: 10.1159/000454781
    Mayanagi G, Igarashi K, Washio J, Takahashi N (2017). pH Response and Tooth Surface Solubility at the Tooth/Bacteria Interface.
  • DOI: 10.1371/journal.pone.0180087
    Magennis EP, Francini N, Mastrotto F, Catania R, Redhead M, Fernandez-Trillo F, Bradshaw D, Churchley D, Winzer K, Alexander C, Mantovani G (2017). Polymers for binding of the gram-positive oral pathogen Streptococcus mutans.
  • DOI: 10.1016/j.jdent.2018.04.003
    Garcia IM, Leitune VCB, Visioli F, Samuel SMW, Collares FM (2018). Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.
  • DOI: 10.1002/cre2.220
    Kondo Y, Hoshino T, Ogawa M, Hidaka K, Hasuwa T, Moriuchi H, Fujiwara T (2019). Streptococcus mutans isolated from a 4-year-old girl diagnosed with infective endocarditis.
  • Abdul Azees PA, Wang H, Chen XD, Yeh CK, Garcia-Godoy F (2022). In vitro effect of an oral spray and mouthrinses on dual species cariogenic bacteria biofilm.
  • DOI: 10.3390/dj12020040
    Rajala O, Mantynen M, Loimaranta V (2024). Pine-Oil-Derived Sodium Resinate Inhibits Growth and Acid Production of Streptococcus mutans In Vitro.
  • DOI: 10.1111/omi.12397
    Gu M, Nguyen HT, Cho JH, Suh JW, Cheng J (2022). Characterization of Leuconostoc mesenteroides MJM60376 as an oral probiotic and its antibiofilm activity.
  • DOI: 10.4014/jmb.1301.01028
    Kim DK, Kim KH, Cho EJ, Joo SJ, Chung JM, Son BY, Yum JH, Kim YM, Kwon HJ, Kim BW, Kim TH, Lee EW (2013). Gene cloning and characterization of MdeA, a novel multidrug efflux pump in Streptococcus mutans.
Outside links and data sources
Retrieved about 1 month ago via StrainInfo API (CC BY 4.0)

Metadata

Cannonical URL
https://seqco.de/s:36886
Local history
  • Registered 8 months ago
  • Last modified about 1 month ago
© 2022-2025 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license