-
DOI: 10.1046/j.1365-2672.2003.01823.x
Foulquie Moreno MR, Callewaert R, Devreese B, Van Beeumen J, De Vuyst L
(2003).
Isolation and biochemical characterisation of enterocins produced by enterococci from different sources.
-
DOI: 10.1099/ijs.0.65535-0
Tanasupawat S, Sukontasing S, Lee JS
(2008).
Enterococcus thailandicus sp. nov., isolated from fermented sausage ('mum') in Thailand.
-
DOI: 10.1016/s0167-7012(03)00186-6
Chan RK, Wortman CR, Smiley BK, Hendrick CA
(2003).
Construction and use of a computerized DNA fingerprint database for lactic acid bacteria from silage.
-
DOI: 10.3389/fmicb.2023.1138830
Wu J, Shui H, Zhang M, Zeng Y, Zheng M, Zhu KK, Wang SB, Bi H, Hong K, Cai YS
(2023).
Aculeaxanthones A-E, new xanthones from the marine-derived fungus Aspergillus aculeatinus WHUF0198.
-
DOI: 10.1128/jcm.33.1.141-145.1995
Donabedian S, Chow JW, Shlaes DM, Green M, Zervos MJ
(1995).
DNA hybridization and contour-clamped homogeneous electric field electrophoresis for identification of enterococci to the species level.
-
DOI: 10.1111/j.1574-6968.1998.tb12944.x
Sechi LA, Franklin R, Dupre I, Zanetti S, Fadda G, Daneo-Moore L
(1998).
Characterization of new insertion-like sequences of Enterococcus hirae and their dissemination among clinical Enterococcus faecium isolates.
-
DOI: 10.1016/S0723-2020(99)80023-X
Naimi A, Beck G, Monique M, Lefebvre G, Branlanti C
(1999).
Determination of the nucleotide sequence of the 23S ribosomal RNA and flanking spacers of an Enterococcus faecium strain, reveals insertion-deletion events in the ribosomal spacer 1 of enterococci.
-
DOI: 10.1034/j.1600-0463.2001.d01-148.x
El Amin N, Lund B, Tjernlund A, Lundberg C, Jalakas K, Wretlind B
(2001).
Mechanisms of resistance to imipenem in imipenem-resistant, ampicillin-sensitive Enterococcus faecium.
-
DOI: 10.1111/j.1574-6968.2002.tb11041.x
Oana K, Okimura Y, Kawakami Y, Hayashida N, Shimosaka M, Okazaki M, Hayashi T, Ohnishi M
(2002).
Physical and genetic map of Enterococcus faecium ATCC19434 and demonstration of intra- and interspecific genomic diversity in enterococci.
-
DOI: 10.1099/jmm.0.46303-0
Oyamada Y, Ito H, Fujimoto K, Asada R, Niga T, Okamoto R, Inoue M, Yamagishi JI
(2006).
Combination of known and unknown mechanisms confers high-level resistance to fluoroquinolones in Enterococcus faecium.
-
Lazar V, Miyazaki Y, Hanawa T, Chifiriuc MC, Ditu LM, Marutescu L, Bleotu C, Kamiya S
(2009).
The influence of some probiotic supernatants on the growth and virulence features expression of several selected enteroaggregative E. coli clinical strains.
-
DOI: 10.1099/ijs.0.030825-0
Morandi S, Cremonesi P, Povolo M, Brasca M
(2011).
Enterococcus lactis sp. nov., from Italian raw milk cheeses.
-
DOI: 10.1007/s00284-016-1065-1
Ren X, Li M, Guo D
(2016).
Enterococcus Xinjiangensis sp. nov., Isolated from Yogurt of Xinjiang, China.
-
DOI: 10.1186/s12906-016-1459-4
Okoh SO, Iweriegbor BC, Okoh OO, Nwodo UU, I Okoh A
(2016).
Bactericidal and antioxidant properties of essential oils from the fruits Dennettia tripetala G. Baker.
-
DOI: 10.1186/s13059-019-1879-9
Seishima J, Iida N, Kitamura K, Yutani M, Wang Z, Seki A, Yamashita T, Sakai Y, Honda M, Yamashita T, Kagaya T, Shirota Y, Fujinaga Y, Mizukoshi E, Kaneko S
(2019).
Gut-derived Enterococcus faecium from ulcerative colitis patients promotes colitis in a genetically susceptible mouse host.
-
DOI: 10.1007/s42770-022-00860-9
Hidalgo VM, Babot JD, Fernandez MM, Perez Chaia A, Audisio C, Apella MC
(2022).
Characterization of lactic acid bacteria isolated from the poultry intestinal environment with anti-Salmonella activity in vitro.
-
DOI: 10.1093/jambio/lxae001
Wu Y, Li H, Wu P, Wu R, She P
(2024).
Insights into the antimicrobial effects of tafenoquine against Enterococcus and its biofilms.
-
DOI: 10.1155/2010/290286
Guerra NP, Fajardo P, Fucinos C, Amado IR, Alonso E, Torrado A, Pastrana L
(2010).
Modelling the biphasic growth and product formation by Enterococcus faecium CECT 410 in realkalized fed-batch fermentations in whey.
-
DOI: 10.3389/fnut.2022.989427
Ayuda-Duran B, Sanchez-Hernandez E, Gonzalez-Manzano S, Santos-Buelga C, Gonzalez-Paramas AM
(2022).
The effects of polyphenols against oxidative stress in Caenorhabditis elegans are determined by coexisting bacteria.
-
DOI: 10.1016/j.archoralbio.2019.104617
Ng ZJ, Zarin MA, Lee CK, Phapugrangkul P, Tan JS
(2019).
Isolation and characterization of Enterococcus faecium DSM 20477 with ability to secrete antimicrobial substance for the inhibition of oral pathogen Streptococcus mutans UKMCC 1019.
-
DOI: 10.1016/j.ijfoodmicro.2008.02.024
Zotta T, Ricciardi A, Ciocia F, Rossano R, Parente E
(2008).
Diversity of stress responses in dairy thermophilic streptococci.
-
DOI: 10.1007/s10068-021-00938-4
Kim YC, Lee J, Park JH, Mah JH, Kim SY, Kim YW
(2021).
Development of a colorimetric enzymatic assay method for aromatic biogenic monoamine-producing decarboxylases.
-
DOI: 10.1046/j.1365-2672.2003.01975.x
Park SH, Itoh K, Fujisawa T
(2003).
Characteristics and identification of enterocins produced by Enterococcus faecium JCM 5804T.
-
DOI: 10.1155/2011/834151
Suzuki N, Yoneda M, Hatano Y, Iwamoto T, Masuo Y, Hirofuji T
(2011).
Enterococcus faecium WB2000 Inhibits Biofilm Formation by Oral Cariogenic Streptococci.
-
DOI: 10.1128/AEM.65.11.5134-5138.1999
Netherwood T, Gilbert HJ, Parker DS, O'Donnell AG
(1999).
Probiotics shown to change bacterial community structure in the avian gastrointestinal tract.
-
DOI: 10.1099/ijsem.0.004948
Belloso Daza MV, Cortimiglia C, Bassi D, Cocconcelli PS
(2021).
Genome-based studies indicate that the Enterococcus faecium Clade B strains belong to Enterococcus lactis species and lack of the hospital infection associated markers.
-
DOI: 10.1016/j.fsi.2019.10.063
Tarkhani R, Imani A, Hoseinifar SH, Ashayerizadeh O, Sarvi Moghanlou K, Manaffar R, Van Doan H, Reverter M
(2019).
Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus rutilus caspicus) fingerlings.