Multidisciplinary


Publications
185

The ‘Candidatus Phytoplasma mali’ effector protein SAP11CaPm interacts with MdTCP16, a class II CYC/TB1 transcription factor that is highly expressed during phytoplasma infection

Citation
Mittelberger et al. (2022). PLOS ONE 17 (12)
Names
Ca. Phytoplasma asteris Ca. Phytoplasma mali
Abstract
’Candidatus Phytoplasma mali’, is a bacterial pathogen associated with the so-called apple proliferation disease in Malus × domestica. The pathogen manipulates its host with a set of effector proteins, among them SAP11CaPm, which shares similarity to SAP11AYWB from ’Candidatus Phytoplasma asteris’. SAP11AYWB interacts and destabilizes the class II CIN transcription factors of Arabidopsis thaliana, namely AtTCP4 and AtTCP13 as well as the class II CYC/TB1 transcription factor AtTCP18, also known

New globally distributed bacterial phyla within the FCB superphylum

Citation
Gong et al. (2022). Nature Communications 13 (1)
Names
“Orphanbacterum longqiense” “Joyebacterota” “Arandabacteraceae” “Arandabacterota” “Arandabacterales” “Arandabacteria” “Orphanbacterum” “Arandabacterum bohaiense” “Blakebacterota” “Orphanbacteraceae” “Joyebacterum haimaense” “Blakebacterum guaymasense” “Orphanbacterales” “Joyebacterum” “Blakebacterum” “Orphanbacteria” “Joyebacteraceae” “Blakebacteraceae” “Orphanbacterota” “Joyebacterales” “Blakebacterales” “Arandabacterum” “Joyebacteria” “Blakebacteria”
Abstract
AbstractMicrobes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbact

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredox

Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota

Citation
Sheridan et al. (2022). Nature Communications 13 (1)
Names
“Lutacidiplasmatales” “Lutacidiplasma silvani” “Lutacidiplasma” “Lutacidiplasmataceae”
Abstract
AbstractThe Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) “Lutacidiplasmatales” due to their occurrence in various

Identification of three new ‘Candidatus Liberibacter solanacearum’ haplotypes in four psyllid species (Hemiptera: Psylloidea)

Citation
Grimm et al. (2022). Scientific Reports 12 (1)
Names
“Liberibacter solanacearum”
Abstract
AbstractEleven haplotypes of the bacterium, ‘Candidatus Liberibacter solanacearum’, have been identified worldwide, several of which infect important agricultural crops. In the United States, haplotypes A and B are associated with yield and quality losses in potato, tomato, and other crops of the Solanaceae. Both haplotypes are vectored by potato psyllid, Bactericera cockerelli. Recently, a third haplotype, designated F, was identified in southern Oregon potato fields. To identify the vector of

Genomic remnants of ancestral methanogenesis and hydrogenotrophy in Archaea drive anaerobic carbon cycling

Citation
Adam et al. (2022). Science Advances 8 (44)
Names
“Hecatellales” “Hecatella orcuttiae” “Hecatella” “Hecatellaceae”
Abstract
Anaerobic methane metabolism is among the hallmarks of Archaea, originating very early in their evolution. Here, we show that the ancestor of methane metabolizers was an autotrophic CO 2 -reducing hydrogenotrophic methanogen that possessed the two main complexes, methyl-CoM reductase (Mcr) and tetrahydromethanopterin-CoM methyltransferase (Mtr), the anaplerotic hydrogenases Eha and Ehb, and a set of other genes collectively called “methanogenesis markers” but

Rapid visual Candidatus Liberibacter asiaticus detection (citrus greening disease) using simple alkaline heat DNA lysis followed by loop-mediated isothermal amplification coupled hydroxynaphthol blue (AL-LAMP-HNB) for potential local use

Citation
Thoraneenitiyan et al. (2022). PLOS ONE 17 (10)
Names
Ca. Liberibacter asiaticus
Abstract
An outbreak of citrus greening or Huanglongbing disease bacteria occurs in many areas. We sampled and identified an ongoing ~year 2020 orange tree endemic in northern Thailand as Candidatus Liberibacter asiaticus. We thereby developed a plant greening disease (C. Liberibacter asiaticus) detection assay using simple alkaline heat DNA lysis and loop-mediated isothermal amplification coupled hydroxynaphthol blue (AL-LAMP-HNB), and evaluated the developed assay for its feasibility as point-of-care d

Biosynthetic potential of the global ocean microbiome

Citation
Paoli et al. (2022). Nature 607 (7917)
Names
“Eudoremicrobium malaspinii” “Eudoremicrobiaceae” “Eudoremicrobium”
Abstract
AbstractNatural microbial communities are phylogenetically and metabolically diverse. In addition to underexplored organismal groups1, this diversity encompasses a rich discovery potential for ecologically and biotechnologically relevant enzymes and biochemical compounds2,3. However, studying this diversity to identify genomic pathways for the synthesis of such compounds4 and assigning them to their respective hosts remains challenging. The biosynthetic potential of microorganisms in the open oc

Genomic diversity across the Rickettsia and ‘Candidatus Megaira’ genera and proposal of genus status for the Torix group

Citation
Davison et al. (2022). Nature Communications 13 (1)
Names
Ca. Megaira “Tisiphia”
Abstract
AbstractMembers of the bacterial genusRickettsiawere originally identified as causative agents of vector-borne diseases in mammals. However, manyRickettsiaspecies are arthropod symbionts and close relatives of ‘CandidatusMegaira’, which are symbiotic associates of microeukaryotes. Here, we clarify the evolutionary relationships between these organisms by assembling 26 genomes ofRickettsiaspecies from understudied groups, including the Torix group, and two genomes of ‘Ca. Megaira’ from various in

Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host

Citation
Tran et al. (2022). Nature Communications 13 (1)
Names
“Bordetella atropi”
Abstract
AbstractIntracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae.