Cate, Jamie H. D.


Publications
3

Candidatus Nealsonbacteria” Are Likely Biomass Recycling Ectosymbionts of Methanogenic Archaea in a Stable Benzene-Degrading Enrichment Culture

Citation
Chen et al. (2023). Applied and Environmental Microbiology 89 (5)
Names
“Nealsoniibacteriota”
Abstract
An anaerobic microbial enrichment culture was used to study members of candidate phyla that are difficult to grow in the lab. We were able to visualize tiny “ Candidatus Nealsonbacteria” cells attached to a large Methanothrix cell, revealing a novel episymbiosis.

CandidatusNealsonbacteria (OD1) are biomass recycling ectosymbionts of methanogenic archaea in a stable benzene-degrading enrichment culture

Citation
Chen et al. (2022).
Names
“Nealsoniibacteriota”
Abstract
SummaryThe Candidate Phyla Radiation (CPR) is a very large group of bacteria with no pure culture representatives, first discovered by metagenomic analyses. Within the CPR, candidate phylum Parcubacteria (previously referred to as OD1) within the candidate superphylum Patescibacteria is prevalent in anoxic sediments and groundwater. Previously, we had identified a specific member of the Parcubacteria (referred to as DGGOD1a) as an important member of a methanogenic benzene-degrading consortium.
Text

Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems

Citation
He et al. (2021). Nature Microbiology 6 (3)
Names
“Montesoliibacteriota” Azosocius agrarius Ts
Abstract
AbstractCandidate phyla radiation (CPR) bacteria and DPANN archaea are unisolated, small-celled symbionts that are often detected in groundwater. The effects of groundwater geochemistry on the abundance, distribution, taxonomic diversity and host association of CPR bacteria and DPANN archaea has not been studied. Here, we performed genome-resolved metagenomic analysis of one agricultural and seven pristine groundwater microbial communities and recovered 746 CPR and DPANN genomes in total. The pr
Text