SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Authors Su

JSON
See as cards

Su, Lei


Publications
3

CitationNamesAbstract
Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome Su et al. (2024). mBio 15 (8) Ca. Effluvibates Ca. Effluviviacota Ca. Effluvivivax
Text
New globally distributed bacterial phyla within the FCB superphylum Gong et al. (2022). Nature Communications 13 (1) 24 Names
Text
New globally distributed bacteria with high proportions of novel protein families involved in sulfur and nitrogen cycling Gong et al. (2022).
Text

Genomic characterization of the bacterial phylum Candidatus Effluviviacota, a cosmopolitan member of the global seep microbiome
ABSTRACT The microbial communities of marine seep sediments contain unexplored physiological and phylogenetic diversity. Here, we examined 30 bacterial metagenome-assembled genomes (MAGs) from cold seeps in the South China Sea, the Indian Ocean, the Scotian Basin, and the Gulf of Mexico, as well as from deep-sea hydrothermal sediments in the Guaymas Basin, Gulf of California. Phylogenetic analyses of these MAGs indicate that they form a distinct phylum-level bacterial lineage, which we propose as a new phylum, Candidatus Effluviviacota, in reference to its preferential occurrence at diverse seep areas. Based on tightly clustered high-quality MAGs, we propose two new genus-level candidatus taxa, Candidatus Effluvivivax and Candidatus Effluvibates. Genomic content analyses indicate that Candidatus Effluviviacota are chemoheterotrophs that harbor the Embden–Meyerhof–Parnas glycolysis pathway. They gain energy by fermenting organic substrates. Additionally, they display potential capabilities for the degradation of cellulose, hemicellulose, starch, xylan, and various peptides. Extracellular anaerobic respiration appears to rely on metals as electron acceptors, with electron transfer primarily mediated by multiheme cytochromes and by a flavin-based extracellular electron transfer (EET) mechanism that involves NADH-quinone oxidoreductase-demethylmenaquinone-synthesizing enzymes, uncharacterized membrane proteins, and flavin-binding proteins, also known as the NUO-DMK-EET-FMN complex. The heterogeneity within the Ca . Effluviviacota phylum suggests varying roles in energy metabolism among different genera. While NUO-DMK-EET-FMN electron transfer has been reported predominantly in Gram-positive bacteria, it is now identified in Ca . Effluviviacota as well. We detected the presence of genes associated with bacterial microcompartments in Ca . Effluviviacota, which can promote specific metabolic processes and protect the cytosol from toxic intermediates. IMPORTANCE The newly discovered bacterial phylum Candidatus Effluviviacota is widespread across diverse seepage ecosystems, marine environments, and freshwater environments, with a notable preference for cold seeps. While maintaining an average abundance of approximately 1% in the global gene catalog of cold seep habitats, it has not hitherto been characterized. The metabolic versatility of Ca . Effluviviacota in anaerobic carbon, hydrogen, and metal cycling aligns with its prevalence in anoxic niches, with a preference for cold seep environments. Variations in metabolic potential between Ca . Effluvivivax and Ca . Effluvibates may contribute to shaping their respective habitat distributions.
Publication names
Loading names...
New globally distributed bacterial phyla within the FCB superphylum
AbstractMicrobes in marine sediments play crucial roles in global carbon and nutrient cycling. However, our understanding of microbial diversity and physiology on the ocean floor is limited. Here, we use phylogenomic analyses of thousands of metagenome-assembled genomes (MAGs) from coastal and deep-sea sediments to identify 55 MAGs that are phylogenetically distinct from previously described bacterial phyla. We propose that these MAGs belong to 4 novel bacterial phyla (Blakebacterota, Orphanbacterota, Arandabacterota, and Joyebacterota) and a previously proposed phylum (AABM5-125-24), all of them within the FCB superphylum. Comparison of their rRNA genes with public databases reveals that these phyla are globally distributed in different habitats, including marine, freshwater, and terrestrial environments. Genomic analyses suggest these organisms are capable of mediating key steps in sedimentary biogeochemistry, including anaerobic degradation of polysaccharides and proteins, and respiration of sulfur and nitrogen. Interestingly, these genomes code for an unusually high proportion (~9% on average, up to 20% per genome) of protein families lacking representatives in public databases. Genes encoding hundreds of these protein families colocalize with genes predicted to be involved in sulfur reduction, nitrogen cycling, energy conservation, and degradation of organic compounds. Our findings advance our understanding of bacterial diversity, the ecological roles of these bacteria, and potential links between novel gene families and metabolic processes in the oceans.
New globally distributed bacteria with high proportions of novel protein families involved in sulfur and nitrogen cycling
Abstract Microbes are the most abundant form of life on Earth and play crucial roles in carbon and nutrient cycling. Despite their crucial role, our understanding of microbial diversity and physiology on the ocean floor is limited. To address this gap in knowledge, we obtained 55 novel bacterial metagenome-assembled genomes (MAGs) from coastal and deep sea sediments. Phylogenomic analyses revealed they belong to four new and one poorly described bacterial phyla. Comparison of their rRNA genes with public databases revealed they are all globally distributed. These novel bacteria are capable of the anaerobic degradation of polysaccharides and proteins, and the respiration of sulfur and nitrogen. These genomes code for an unusually high proportion (~ 9, and up to 20% per genome) of protein families lacking representatives in public databases. Hundreds of these protein families are predicted to be co-localized with genes for sulfur reduction, nitrogen cycling, energy conservation, and the degradation of organic compounds. These findings expand our understanding of microbial diversity and link previously overlooked gene families with key metabolic processes in the oceans.
Search