Mueller, Anna J


Publications
2

Co-occurring nitrifying symbiont lineages are vertically inherited and widespread in marine sponges

Citation
Glasl et al. (2024). The ISME Journal 18 (1)
Names
“Nitrosokoinonia” “Nitrosymbion” “Nitrosokoinonia keratosae” “Nitrosymbion coscinodermae”
Abstract
Abstract Ammonia-oxidizing archaea and nitrite-oxidizing bacteria are common members of marine sponge microbiomes. They derive energy for carbon fixation and growth from nitrification—the aerobic oxidation of ammonia to nitrite and further to nitrate—and are proposed to play essential roles in the carbon and nitrogen cycling of sponge holobionts. In this study, we characterize two novel nitrifying symbiont lineages, Candidatus Nitrosokoinonia and Candidatus Nitrosymbion in the mar
Text

Cultivation and genomic characterization of novel and ubiquitous marine nitrite-oxidizing bacteria from the Nitrospirales

Citation
Mueller et al. (2023). The ISME Journal 17 (11)
Names
“Nitronereus” “Nitronereus thalassa”
Abstract
Abstract Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO2, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira). Thes
Text