Cai, Lulu


Publications
3

Candidatus Liberibacter asiaticus’ Expands and Scavenges the Nutritional Choline Pool in Its Host Grapefruit (Citrus × paradisi) Leaves

Citation
Jain et al. (2023). PhytoFrontiers™ 3 (4)
Names
Ca. Liberibacter asiaticus
Abstract
Phosphatidylcholine (PtdCho) is an unusual membrane phospholipid present in some endosymbiotic and intracellular pathogenic prokaryotes. ‘ Candidatus Liberibacter asiaticus’ (CLas) is a phloem-limited, uncultured, fastidious α-Proteobacterium associated with the devastating citrus “greening” disease (huanglongbing). Phylogenetically related but nonpathogenic Liberibacter crescens (Lcr) was used as a culturable surrogate to examine PtdCho biosynthesis in pathogenic CLas. Genes encoding key enzym
Text

A synthetic ‘essentialome’ for axenic culturing of ‘Candidatus Liberibacter asiaticus’

Citation
Cai et al. (2022). BMC Research Notes 15 (1)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
Abstract Objective ‘Candidatus Liberibacter asiaticus’ (CLas) is associated with the devastating citrus ‘greening’ disease. All attempts to achieve axenic growth and complete Koch’s postulates with CLas have failed to date, at best yielding complex cocultures with very low CLas titers detectable only by PCR. Reductive genome evolution has rendered all pathogenic ‘Ca. Liberibacter’ spp. deficient in multiple key biosynthetic, metabolic and structural pathways that
Text

Candidatus Liberibacter asiaticus’-Encoded BCP Peroxiredoxin Suppresses Lipopolysaccharide-Mediated Defense Signaling and Nitrosative Stress In Planta

Citation
Jain et al. (2022). Molecular Plant-Microbe Interactions® 35 (3)
Names
Liberibacter Ca. Liberibacter asiaticus
Abstract
The lipopolysaccharides (LPS) of gram-negative bacteria trigger a nitrosative and oxidative burst in both animals and plants during pathogen invasion. Liberibacter crescens strain BT-1 is a surrogate for functional genomic studies of the uncultured pathogenic ‘Candidatus Liberibacter’ spp. that are associated with severe diseases such as citrus greening and potato zebra chip. Structural determination of L. crescens LPS revealed the presence of a very long chain fatty acid modification. L. cresc
Text