Avila, Carlos A.


Publications
3

Insights into Bactericera cockerelli and Candidatus Liberibacter solanacearum interaction: a tissue-specific transcriptomic approach

Citation
Singh Rajkumar et al. (2024). Frontiers in Plant Science 15
Names
“Liberibacter solanacearum”
Abstract
The tomato-potato psyllid, Bactericera cockerelli (Šulc), belonging to the Hemiptera order, is an insect pest of solanaceous crops and vectors a fastidious bacterium, Candidatus Liberibacter solanacearum (CLso), the presumptive causal agent of zebra chip and vein greening diseases in potatoes and tomatoes, respectively. The genome of B. cockerelli has been sequenced recently, providing new avenues to elucidate mechanistic insights into pathogenesis in vegetable crops. In this study, we performed

Plant hairy roots enable high throughput identification of antimicrobials against Candidatus Liberibacter spp

Citation
Irigoyen et al. (2020). Nature Communications 11 (1)
Names
Liberibacter
Abstract
AbstractA major bottleneck in identifying therapies to control citrus greening and other devastating plant diseases caused by fastidious pathogens is our inability to culture the pathogens in defined media or axenic cultures. As such, conventional approaches for antimicrobial evaluation (genetic or chemical) rely on time-consuming, low-throughput and inherently variable whole-plant assays. Here, we report that plant hairy roots support the growth of fastidious pathogens like Candidatus Liberibac

Bactericera cockerelli resistance in the wild tomato Solanum habrochaites is polygenic and influenced by the presence of Candidatus Liberibacter solanacearum

Citation
Avila et al. (2019). Scientific Reports 9 (1)
Names
“Liberibacter solanacearum”
Abstract
Abstract The tomato-potato psyllid (TPP), Bactericera cockerelli, is a vector for the phloem-limited bacterium Candidatus Liberibacter solanacearum (Lso), the causative agent of economically important diseases including tomato vein-greening and potato zebra chip. Here, we screened 11 wild tomato relatives for TPP resistance as potential resources for tomato (Solanum lycopersicum) cultivar development. Six accessions with strong TPP resistance (survival <10%) were identified with