Hahn, Cedric Jasper


Publications
2

Candidatus Ethanoperedens,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

Citation
Hahn et al. (2020). mBio 11 (2)
Names
“Caldatribacteriota” Ca. Argarchaeum “Desulfofervidus auxilii” Ca. Ethanoperedens Ca. Ethanoperedens thermophilum
Abstract
In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing

Candidatus Ethanoperedens, a thermophilic genus of archaea mediating the anaerobic oxidation of ethane

Citation
Hahn et al. (2020).
Names
Ca. Argarchaeum “Desulfofervidus auxilii” Ca. Ethanoperedens Ca. Ethanoperedens thermophilum
Abstract
ABSTRACTCold seeps and hydrothermal vents deliver large amounts of methane and other gaseous alkanes into marine surface sediments. Consortia of archaea and partner bacteria thrive on the oxidation of these alkanes and its coupling to sulfate reduction. The inherently slow growth of the involved organisms and the lack of pure cultures have impeded the understanding of the molecular mechanisms of archaeal alkane degradation. Here, using hydrothermal sediments of the Guaymas Basin (Gulf of Califor