Meng, Yiyu


Publications
3

Acidotolerant soil nitrite oxidiser 'CandidatusNitrobacter laanbroekii' NHB1 alleviates constraints on growth of acidophilic soil ammonia oxidisers

Citation
Hink et al. (2024).
Names
Abstract
Nitrobacterstrain NHB1 is a nitrite-oxidising bacterium previously co-enriched with the neutrophilic ammonia-oxidising bacteriumNitrosospiraAHB1, a consortium that nitrifies in acidic conditions in co-culture. Here we characterise the growth of the isolateNitrobacterstrain NHB1 as a function of pH and nitrite (NO2-) concentration, and its influence on the activity of acidophilic soil ammonia-oxidising archaea (AOA). NHB1 is acidotolerant and grows optimally at pH 6.0 (range 5.0 - 7.5) at initial

Recovery of Lutacidiplasmatales archaeal order genomes suggests convergent evolution in Thermoplasmatota

Citation
Sheridan et al. (2022). Nature Communications 13 (1)
Names
“Lutacidiplasmatales” “Lutacidiplasma silvani” “Lutacidiplasma” “Lutacidiplasmataceae”
Abstract
AbstractThe Terrestrial Miscellaneous Euryarchaeota Group has been identified in various environments, and the single genome investigated thus far suggests that these archaea are anaerobic sulfite reducers. We assemble 35 new genomes from this group that, based on genome analysis, appear to possess aerobic and facultative anaerobic lifestyles and may oxidise rather than reduce sulfite. We propose naming this order (representing 16 genera) “Lutacidiplasmatales” due to their occurrence in various