A Transcriptomics Approach Reveals Putative Interaction of Candidatus Liberibacter Solanacearum with the Endoplasmic Reticulum of Its Psyllid Vector


Citation
Ghosh et al. (2019). Insects 10 (9)
Names (3)
Subjects
Insect Science
Abstract
Candidatus Liberibacter solanacerum (CLso), transmitted by Bactericera trigonica in a persistent and propagative mode causes carrot yellows disease, inflicting hefty economic losses. Understanding the process of transmission of CLso by psyllids is fundamental to devise sustainable management strategies. Persistent transmission involves critical steps of adhesion, cell invasion, and replication before passage through the midgut barrier. This study uses a transcriptomic approach for the identification of differentially expressed genes with CLso infection in the midguts, adults, and nymphs of B. trigonica and their putative involvement in CLso transmission. Several genes related to focal adhesion and cellular invasion were upregulated after CLso infection. Interestingly, genes involved with proper functionality of the endoplasmic reticulum (ER) were upregulated in CLso infected samples. Notably, genes from the endoplasmic reticulum associated degradation (ERAD) and the unfolded protein response (UPR) pathway were overexpressed after CLso infection. Marker genes of the ERAD and UPR pathways were also upregulated in Diaphorina citri when infected with Candidatus Liberibacter asiaticus (CLas). Upregulation of the ERAD and UPR pathways indicate induction of ER stress by CLso/CLas in their psyllid vector. The role of ER in bacteria–host interactions is well-documented; however, the ER role following pathogenesis of CLso/CLas is unknown and requires further functional validation.
Authors
Publication date
2019-09-02
DOI
10.3390/insects10090279

© 2022-2024 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license