The Impact of Diaphorina citri-Vectored ‘Candidatus Liberibacter asiaticus’ on Citrus Metabolism


Citation
Padhi et al. (2022). Phytopathology® 112 (1)
Names (1)
Subjects
Agronomy and Crop Science Plant Science
Abstract
‘Candidatus Liberibacter asiaticus’ is associated with the devastating citrus disease Huanglongbing (HLB). It is transmitted by grafting infected material to healthy plants and by the feeding of the Asian citrus psyllid (Diaphorina citri). Previously, we demonstrated that a metabolomics approach using proton-nuclear magnetic resonance spectroscopy discriminates healthy from diseased plants via grafting. This work assessed the capability of this technology in discriminating healthy and diseased plants when the bacterium is vectored by psyllids. One-year-old greenhouse-grown ‘Lisbon’ lemon trees were exposed to either carrier psyllids (exposed, n = 10), or psyllids that were free of ‘Candidatus Liberibacter asiaticus’ (control, n = 6). Leaf metabolites were tracked for 1 year and disease diagnosis was made using quantitative PCR. Overall, 31 water-soluble metabolites were quantified in leaves, including four sugars and 12 amino acids. Analysis via nonmetric multidimensional scaling and principal component analysis revealed significant differences between the leaf metabolome of control versus infected trees beginning at 8 weeks postexposure, including alterations in glucose and quinic acid concentrations. These findings provide a longitudinal overview of the metabolic effects of HLB during the early phases of disease, and confirm previous experimental work demonstrating that infection elicits changes in the leaf metabolome that enables discrimination between healthy and infected plants. Here we demonstrate that the mode of inoculation (i.e., graft versus psyllid) results in a similar pathology.
Authors
Publication date
2022-01-01
DOI
10.1094/phyto-06-21-0240-fi