In Silico Three-Dimensional (3D) Modeling of the SecY Protein of ‘Candidatus Phytoplasma Solani’ Strains Associated with Grapevine “Bois Noir” and Its Possible Relationship with Strain Virulence

Pierro et al. (2022). International Journal of Plant Biology 13 (2)
Names (1)
Ca. Phytoplasma solani
Plant Science
Grapevine “bois noir”, related to the presence of ‘Candidatus Phytoplasma solani’ (‘Ca. P. solani’), represents a serious threat in several vine-growing areas worldwide. In surveys conducted over two years, mild and/or moderate symptoms and lower pathogen titer were mainly associated with ‘Ca. P. solani’ strains harboring a secY gene sequence variant (secY52), whereas severe symptoms and higher titer were mainly observed in grapevines infected by phytoplasma strains carrying any one of another four variants. A comparison of amino acid sequences of the protein SecY of ‘Ca. P. solani’ strains revealed the presence of conservative and semi-conservative substitutions. The deduced three-dimensional (3D) protein analysis unveiled that one semi-conservative substitution identified in the sequence variant secY52 is responsible for a structural disordered region that probably confers a flexibility for binding to distinct molecular complexes. In fact, the other analyzed variants show an organized structure and the 3D in silico prediction allowed the identification of β-sheets. Thus, differences in symptom severity and pathogen concentration observed in grapevines infected by ‘Ca. P. solani’ strains carrying distinct secY gene sequence variants suggest a possible relationship between SecY protein structure and phytoplasma strain virulence.
Publication date