Ecological significance of Candidatus ARS69 and Gemmatimonadota in the Arctic glacier foreland ecosystems

Venkatachalam et al. (2024). Applied Microbiology and Biotechnology 108 (1)
Names (1)
Ca. ARS69
Applied Microbiology and Biotechnology Biotechnology General Medicine
Abstract  The Gemmatimonadota phylum has been widely detected in diverse natural environments, yet their specific ecological roles in many habitats remain poorly investigated. Similarly, the Candidatus ARS69 phylum has been identified only in a few habitats, and literature on their metabolic functions is relatively scarce. In the present study, we investigated the ecological significance of phyla Ca. ARS69 and Gemmatimonadota in the Arctic glacier foreland (GF) ecosystems through genome-resolved metagenomics. We have reconstructed the first high-quality metagenome-assembled genome (MAG) belonging to Ca. ARS69 and 12 other MAGs belonging to phylum Gemmatimonadota from the three different Arctic GF samples. We further elucidated these two groups phylogenetic lineage and their metabolic function through phylogenomic and pangenomic analysis. The analysis showed that all the reconstructed MAGs potentially belonged to novel species. The MAGs belonged to Ca. ARS69 consist about 8296 gene clusters, of which only about 8% of single-copy core genes (n = 980) were shared among them. The study also revealed the potential ecological role of Ca. ARS69 is associated with carbon fixation, denitrification, sulfite oxidation, and reduction biochemical processes in the GF ecosystems. Similarly, the study demonstrates the widespread distribution of different classes of Gemmatimonadota across wide ranges of ecosystems and their metabolic functions, including in the polar region. Key points • Glacier foreland ecosystems act as a natural laboratory to study microbial community structure. • We have reconstructed 13 metagenome-assembled genomes from the soil samples. • All the reconstructed MAGs belonged to novel species with different metabolic processes. • Ca. ARS69 and Gemmatimonadota MAGs were found to participate in carbon fixation and denitrification processes.
Publication date