Bandi, Claudio


Publications
9

Modeling the Life Cycle of the Intramitochondrial Bacterium “ Candidatus Midichloria mitochondrii” Using Electron Microscopy Data

Citation
Comandatore et al. (2021). mBio 12 (3)
Names
Ca. Midichloria mitochondrii
Abstract
Our results suggest that Midichloria mitochondrii , the intramitochondrial bacterium, does not invade mitochondria like predatory bacteria do but instead moves from mitochondrion to mitochondrion within the oocytes of Ixodes ricinus . A better understanding of the lifestyle of M. mitochondrii will allow us to better define the role of this bacterial symbiont in the host physiology.

Morphology, ultrastructure, genomics, and phylogeny of Euplotes vanleeuwenhoeki sp. nov. and its ultra-reduced endosymbiont “Candidatus Pinguicoccus supinus” sp. nov

Citation
Serra et al. (2020). Scientific Reports 10 (1)
Names
Ca. Pinguicoccus supinus
Abstract
AbstractTaxonomy is the science of defining and naming groups of biological organisms based on shared characteristics and, more recently, on evolutionary relationships. With the birth of novel genomics/bioinformatics techniques and the increasing interest in microbiome studies, a further advance of taxonomic discipline appears not only possible but highly desirable. The present work proposes a new approach to modern taxonomy, consisting in the inclusion of novel descriptors in the organism chara

The extracellular association of the bacterium “CandidatusDeianiraea vastatrix” with the ciliateParameciumsuggests an alternative scenario for the evolution ofRickettsiales

Citation
Castelli et al. (2018).
Names
Ca. Deianiraea vastatrix
Abstract
AbstractRickettsialesare a lineage of obligatorily intracellularAlphaproteobacteria, encompassing important human pathogens, manipulators of host reproduction, and mutualists. Here we report the discovery of a novelRickettsialesbacterium associated withParamecium, displaying a unique extracellular lifestyle, including the ability to replicate outside host cells. Genomic analyses show that the bacterium possesses a higher capability to synthesize amino acids, compared to all investigatedRickettsi

“Candidatus Midichloriaceae” fam. nov. (Rickettsiales), an Ecologically Widespread Clade of Intracellular Alphaproteobacteria

Citation
Montagna et al. (2013). Applied and Environmental Microbiology 79 (10)
Names
“Midichloriaceae” Ca. Midichloria mitochondrii Ca. Midichloriaceae “Fokinia” “Euplotella”
Abstract
ABSTRACT “ Candidatus Midichloria mitochondrii” is an intramitochondrial bacterium of the order Rickettsiales associated with the sheep tick Ixodes ricinus . Bacteria phylogenetically related to “ Ca . Midichloria mitochondrii” (midichloria and like organisms [MALOs]) have been shown to be associated with a wide range of hosts, from amoebae to a variety of animals, including hum

“ Candidatus Midichloria” Endosymbionts Bloom after the Blood Meal of the Host, the Hard Tick Ixodes ricinus

Citation
Sassera et al. (2008). Applied and Environmental Microbiology 74 (19)
Names
Ca. Midichloria
Abstract
ABSTRACT “ Candidatus Midichloria mitochondrii,” an intracellular symbiont of the tick Ixodes ricinus , is the only described organism able to invade the mitochondria of any multicellular organism. We used quantitative PCR to examine cycles of bacterial growth and death throughout the host's development and found that they correspond with the phases of engorgement and molt, respectively.

‘Candidatus Midichloria mitochondrii’, an endosymbiont of the tick Ixodes ricinus with a unique intramitochondrial lifestyle

Citation
Sassera et al. (2006). International Journal of Systematic and Evolutionary Microbiology 56 (11)
Names
Ca. Midichloria mitochondrii Ca. Midichloria
Abstract
An intracellular bacterium with the unique ability to enter mitochondria exists in the European vector of Lyme disease, the hard tick Ixodes ricinus. Previous phylogenetic analyses based on 16S rRNA gene sequences suggested that the bacterium formed a divergent lineage within the Rickettsiales (Alphaproteobacteria). Here, we present additional phylogenetic evidence, based on the gyrB gene sequence, that confirms the phylogenetic position of the bacterium. Based on these data, as well as electron