mBio


Publications
18

Genome reduction and horizontal gene transfer in the evolution of Endomicrobia—rise and fall of an intracellular symbiosis with termite gut flagellates

Citation
Mies et al. (2024). mBio
Names
Ruminimicrobium bovinum Ts Ruminimicrobiellum ovillum Endomicrobiellum Ectomicrobium Parendomicrobium Ectomicrobium neotermitis Ts Parendomicrobium reticulitermitis Ts Ruminimicrobiellum bubulum Ts Ruminimicrobiellum caprinum Ruminimicrobiellum tauri Praeruminimicrobium Proruminimicrobium Ruminimicrobium Ruminimicrobiellum Endomicrobiellum devescovinae Proruminimicrobium quisquiliarum Ts Praeruminimicrobium purgamenti Ts Endomicrobiellum agilis Endomicrobiellum siamense Endomicrobiellum basalitermitum Endomicrobiellum guadaloupense Endomicrobiellum meruensis Endomicrobium embiratermitis Endomicrobium labiotermitis Endomicrobium neocapritermitis Endomicrobium macrotermitis Endomicrobium procryptotermitis Endomicrobiellum dinenymphae Endomicrobiellum trichonymphae Ts Endomicrobiellum pyrsonymphae Endomicrobiellum neotermitis Endomicrobiellum mastotermitis Endomicrobiellum calonymphae Endomicrobiellum cryptotermitis Endomicrobiellum roisinitermitis Endomicrobiellum incisitermitis Endomicrobiellum porotermitis Endomicrobiellum cubanum Endomicrobiellum africanum
Abstract
ABSTRACT Bacterial endosymbionts of eukaryotic hosts typically experience massive genome reduction, but the underlying evolutionary processes are often obscured by the lack of free-living relatives. Endomicrobia, a family-level lineage of host-associated bacteria in the phylum Elusimicrobiota that comprises both free-living representatives and endosymbionts of termite gut flagellates, are an excellent model to study e

Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems

Citation
Kuroda et al. (2024). mBio 15 (3)
Names
Ca. Patescibacteria
Abstract
ABSTRACT To verify whether members of the phylum Candidatus Patescibacteria parasitize archaea, we applied cultivation, microscopy, metatranscriptomic, and protein structure prediction analyses on the Patescibacteria-enriched cultures derived from a methanogenic bioreactor. Amendment of cultures with exogenous methanogenic archaea, acetate, amino acids, and nucleoside monophosphates increased the relative abundance of

Symbiosis between Candidatus Patescibacteria and Archaea Discovered in Wastewater-Treating Bioreactors

Citation
Kuroda et al. (2022). mBio 13 (5)
Names
Ca. Patescibacteria
Abstract
One highly diverse phylogenetic group of Bacteria, Ca . Patescibacteria, remains poorly understood, but, from the few cultured representatives and metagenomic investigations, they are thought to live symbiotically or parasitically with other bacteria or even with eukarya.

Characterization of the First Cultured Representative of “ Candidatus Thermofonsia” Clade 2 within Chloroflexi Reveals Its Phototrophic Lifestyle

Citation
Zheng et al. (2022). mBio 13 (2)
Names
“Thermofontia”
Abstract
The deep ocean microbiota represents the unexplored majority of global ocean waters. The phylum Chloroflexi is abundant and broadly distributed in various deep-sea ecosystems.

Comparative Genomics on Cultivated and Uncultivated Freshwater and Marine “ Candidatus Manganitrophaceae” Species Implies Their Worldwide Reach in Manganese Chemolithoautotrophy

Citation
Yu et al. (2022). mBio 13 (2)
Names
Ca. Manganitrophaceae
Abstract
Manganese (Mn) is an abundant redox-active metal that cycles in many of Earth’s biomes. While diverse bacteria and archaea have been demonstrated to respire Mn(III/IV), only recently have bacteria been implicated in Mn(II) oxidation-dependent growth.

A New Model Trypanosomatid, Novymonas esmeraldas : Genomic Perception of Its “ Candidatus Pandoraea novymonadis” Endosymbiont

Citation
Zakharova et al. (2021). mBio 12 (4)
Names
Ca. Pandoraea novymonadis
Abstract
Novymonas esmeraldas is a parasitic flagellate of the family Trypanosomatidae representing the closest insect-restricted relative of the human pathogen Leishmania . It bears symbiotic bacteria in its cytoplasm, the relationship with which has been established relatively recently and independently from other known endosymbioses in protists.

Modeling the Life Cycle of the Intramitochondrial Bacterium “ Candidatus Midichloria mitochondrii” Using Electron Microscopy Data

Citation
Comandatore et al. (2021). mBio 12 (3)
Names
Ca. Midichloria mitochondrii
Abstract
Our results suggest that Midichloria mitochondrii , the intramitochondrial bacterium, does not invade mitochondria like predatory bacteria do but instead moves from mitochondrion to mitochondrion within the oocytes of Ixodes ricinus . A better understanding of the lifestyle of M. mitochondrii will allow us to better define the role of this bacterial symbiont in the host physiology.

“ Candidatus Ethanoperedens,” a Thermophilic Genus of Archaea Mediating the Anaerobic Oxidation of Ethane

Citation
Hahn et al. (2020). mBio 11 (2)
Names
Ca. Argarchaeum “Desulfofervidus auxilii” Ca. Ethanoperedens Ca. Ethanoperedens thermophilum
Abstract
In the seabed, gaseous alkanes are oxidized by syntrophic microbial consortia that thereby reduce fluxes of these compounds into the water column. Because of the immense quantities of seabed alkane fluxes, these consortia are key catalysts of the global carbon cycle. Due to their obligate syntrophic lifestyle, the physiology of alkane-degrading archaea remains poorly understood. We have now cultivated a thermophilic, relatively fast-growing ethane oxidizer in partnership with a sulfate-reducing

Anaerobic Degradation of Non-Methane Alkanes by “ Candidatus Methanoliparia” in Hydrocarbon Seeps of the Gulf of Mexico

Citation
Laso-Pérez et al. (2019). mBio 10 (4)
Names
Ca. Argarchaeum Methanoliparia Ca. Syntrophoarchaeum Methanoliparum thermophilum Ts
Abstract
Oil-rich sediments from the Gulf of Mexico were found to contain diverse alkane-degrading groups of archaea. The symbiotic, consortium-forming “ Candidatus Argoarchaeum” and “ Candidatus Syntrophoarchaeum” are likely responsible for the degradation of ethane and short-chain alkanes, with the help of sulfate-reducing bacteria. “ Ca. Methanoliparia” occurs as single cells associated with oil droplets. These archae