Gorlenko, Vladimir M


Publications
5

A new mesophilic member of the Chloroflexota phylum ‘Ca. Сhloroploca septentrionalis’ from the meromictic lake Bol'shie Khruslomeny separated from the White Sea

Citation
Gorlenko et al. (2025). FEMS Microbiology Letters 372
Names
Chloroploca “Chloroploca septentrionalis”
Abstract
Abstract A new filamentous phototrophic bacterium Khr17 was isolated as an enrichment culture from the brackish polar lake Bol'shie Khruslomeny. The organism was a halotolerant, strictly anaerobic phototroph possessing photosystem II. Sulfide was required for phototrophic growth. The cells of bacterium Khr17 formed nonmotile, wavy trichomes surrounded by a sheath. The cells contained chlorosomes, gas vesicles, and storage granules. The antenna pigments of bacterium Khr17 were bact

‘Candidatus Chloroploca mongolica’ sp. nov. a new mesophilic filamentous anoxygenic phototrophic bacterium

Citation
Bryantseva et al. (2021). FEMS Microbiology Letters 368 (16)
Names
Chloroploca asiatica Ts Chloroploca mongolica
Abstract
ABSTRACT A mesophilic filamentous anoxygenic phototrophic bacterium, designated M50-1, was isolated from a microbial mat of the Chukhyn Nur soda lake (northeastern Mongolia) with salinity of 5−14 g/L and pH 8.0−9.3. The organism is a strictly anaerobic phototrophic bacterium, which required sulfide for phototrophic growth. The cells formed short undulate trichomes surrounded by a thin sheath and containing gas vesicles. Motility of the trichomes was not observed. The cells contain

‘Candidatus Oscillochloris kuznetsovii’ a novel mesophilic filamentous anoxygenic phototrophic Chloroflexales bacterium from Arctic coastal environments

Citation
Gaisin et al. (2020). FEMS Microbiology Letters 367 (19)
Names
Oscillochloris kuznetsovii
Abstract
ABSTRACT Chloroflexales bacteria are mostly known as filamentous anoxygenic phototrophs that thrive as members of the microbial communities of hot spring cyanobacterial mats. Recently, we described many new Chloroflexales species from non-thermal environments and showed that mesophilic Chloroflexales are more diverse than previously expected. Most of these species were isolated from aquatic environments of mid-latitudes. Here, we present the comprehensive characterization of a new