Reysenbach, Anna-Louise


Publications
12

Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes

Citation
Eme et al. (2023). Nature 618 (7967)
Names
Asgardarchaeota
Abstract
AbstractIn the ongoing debates about eukaryogenesis—the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors—members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2–4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evalua

An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea

Citation
Buessecker et al. (2022). Nature Communications 13 (1)
Names
Wolframiiraptor gerlachensis Ts Wolframiiraptor Wolframiiraptoraceae Benthortus lauensis Ts Geocrenenecus dongiae Ts Geocrenenecus arthurdayi Geocrenenecus huangii Terraquivivens ruidianensis Terraquivivens tengchongensis Terraquivivens yellowstonensis Benthortus Geocrenenecus Terraquivivens Terraquivivens tikiterensis Ts Wolframiiraptor sinensis Wolframiiraptor allenii
Abstract
AbstractTrace metals have been an important ingredient for life throughout Earth’s history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredox

SeqCode: a nomenclatural code for prokaryotes described from sequence data

Citation
Hedlund et al. (2022). Nature Microbiology
Names
Kryptonium mobile Kryptoniaceae Kryptoniia Kryptoniales
Abstract
AbstractMost prokaryotes are not available as pure cultures and therefore ineligible for naming under the rules and recommendations of the International Code of Nomenclature of Prokaryotes (ICNP). Here we summarize the development of the SeqCode, a code of nomenclature under which genome sequences serve as nomenclatural types. This code enables valid publication of names of prokaryotes based upon isolate genome, metagenome-assembled genome or single-amplified genome sequences. Otherwise, it is s