Environmental Microbiology Reports


Publications
9

Whole cell affinity for 4‐amino‐5‐hydroxymethyl‐2‐methylpyrimidine (<scp>HMP</scp>) in the marine bacterium Candidatus<scp>Pelagibacter</scp> st. <scp>HTCC7211</scp> explains marine dissolved <scp>HMP</scp> concentrations

Citation
Brennan et al. (2024). Environmental Microbiology Reports 16 (5)
Names
Ca. Pelagibacter
Abstract
AbstractVitamin B1 is a universally required coenzyme in carbon metabolism. However, most marine microorganisms lack the complete biosynthetic pathway for this compound and must acquire thiamin, or precursor molecules, from the dissolved pool. The most common version of Vitamin B1 auxotrophy is for thiamin's pyrimidine precursor moiety, 4‐amino‐5‐hydroxymethyl‐2‐methylpyrimidine (HMP). Frequent HMP auxotrophy in plankton and vanishingly low dissolved concentrations (approximately 0.1–50 pM) sugg

Unique episymbiotic relationship between Candidatus Patescibacteria and Zoogloea in activated sludge flocs at a municipal wastewater treatment plant

Citation
Fujii et al. (2024). Environmental Microbiology Reports 16 (5)
Names
Ca. Patescibacteria
Abstract
AbstractCandidatus Patescibacteria, also known as candidate phyla radiation (CPR), including the class‐level uncultured clade JAEDAM01 (formerly a subclass of Gracilibacteria/GN02/BD1‐5), are ubiquitous in activated sludge. However, their characteristics and relationships with other organisms are largely unknown. They are believed to be episymbiotic, endosymbiotic or predatory. Despite our understanding of their limited metabolic capacity, their precise roles remain elusive due to the difficulty

Distribution of the <scp>N2</scp>‐fixing cyanobacterium Candidatus Atelocyanobacterium thalassa in the Mexican Pacific upwelling system under two contrasting El Niño Southern Oscillation conditions

Citation
Vieyra‐Mexicano et al. (2024). Environmental Microbiology Reports 16 (1)
Names
Ca. Atelocyanobacterium thalassa
Abstract
AbstractThe unicellular cyanobacterium Candidatus Atelocyanobacterium thalassa (UCYN‐A) is a key diazotroph in the global ocean owing to its high N2 fixation rates and wide distribution in marine environments. Nevertheless, little is known about UCYN‐A in oxygen‐deficient zones (ODZs), which may be optimal environments for marine diazotrophy. Therefore, the distribution and diversity of UCYN‐A were studied in two consecutive years under contrasting phases (La Niña vs. El Niño) of El Niño Souther