SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Journals HortScience

JSON
See as cards

HortScience


Publications
15

  • ←
  • 1
  • 2
  • →
CitationNamesAbstract
Transmission Efficiency of Candidatus Liberibacter asiaticus and Progression of Huanglongbing Disease in Graft- and Psyllid-inoculated Citrus Albrecht et al. (2014). HortScience 49 (3) Ca. Liberibacter asiaticus
Text
Quantitative Distribution of Candidatus Liberibacter asiaticus in the Aerial Parts of the Huanglongbing-infected Citrus Trees in Texas Kunta et al. (2014). HortScience 49 (1) Ca. Liberibacter asiaticus
Text
Incidence and Severity of Huanglongbing and Candidatus Liberibacter asiaticus Titer among Field-infected Citrus Cultivars Stover, McCollum (2011). HortScience 46 (10) Ca. Liberibacter asiaticus
Text
Levels of Candidatus Liberibacter asiaticus and Xanthomonas citri in Diverse Citrus Genotypes and Relevance to Potential Transmission from Pollinations Stover, McCollum (2011). HortScience 46 (6) Ca. Liberibacter asiaticus
Text
Candidatus Liberibacter asiaticus and Huanglongbing Effects on Citrus Seeds and Seedlings Albrecht, Bowman (2009). HortScience 44 (7) Ca. Liberibacter asiaticus Liberibacter
Text
  • ←
  • 1
  • 2
  • →

Transmission Efficiency of Candidatus Liberibacter asiaticus and Progression of Huanglongbing Disease in Graft- and Psyllid-inoculated Citrus
Candidatus Liberibacter asiaticus (Las) is a phloem-limited bacterium associated with huanglongbing (HLB), one of the most destructive diseases of citrus in Florida and other citrus-producing countries. Natural transmission of Las occurs by the psyllid vector Diaphorina citri, but transmission can also occur through grafting with diseased budwood. As a result of the difficulty of maintaining Las in culture, screening of citrus germplasm for HLB resistance often relies on graft inoculation as the mode of pathogen transmission. This study evaluates transmission efficiencies and HLB progression in graft-inoculated and psyllid-inoculated citrus under greenhouse and natural conditions in the field. Frequencies of transmission in graft-inoculated greenhouse-grown plants varied between experiments and were as high as 90% in susceptible sweet orange plants 6 to 12 months after inoculation. Transmission frequency in a tolerant Citrus × Poncirus genotype (US-802) was 31% to 75%. In contrast, transmission of Las after controlled psyllid inoculation did not exceed 38% in any of four experiments in this study. Whereas the time from inoculation to detection of Las by polymerase chain reaction (PCR) was faster in psyllid-inoculated US-802 plants compared with graft-inoculated US-802 plants, it was similar in graft- and psyllid-inoculated sweet orange plants. HLB symptom expression was indistinguishable in graft- and psyllid-inoculated plants but was not always associated with the number of bacteria in affected leaves. The highest number of Las genomes per gram leaf tissue measured in sweet orange plants was one to four × 107 in graft-inoculated plants and one to two × 107 in psyllid-inoculated plants. Highest numbers measured in tolerant US-802 plants were one to three × 106 and two to six × 106, respectively. Compared with artificial inoculation in a greenhouse setting, natural inoculation of field-grown sweet orange trees occurred at a much slower pace, requiring more than 1 year for infection incidence to reach 50% and a minimum of 3 years to reach 100%.
Quantitative Distribution of Candidatus Liberibacter asiaticus in the Aerial Parts of the Huanglongbing-infected Citrus Trees in Texas
The Asian citrus psyllid, Diaphorina citri Kuwayama, one of the known vectors for citrus greening disease or Huanglongbing (HLB) pathogens, has been present in Texas for over a decade, but the detection of the disease is recent. HLB has been confirmed in only two adjacent commercial citrus groves of grapefruit and sweet orange. A study was conducted to compare the population of Candidatus Liberibacter asiaticus (CLas) cells in different plant parts including peduncle, columella, leaves, seeds, young shoots, flower buds, flowers, and bark of 6-year-old known infected grapefruit and sweet orange trees. The bacterial population was estimated using a previously described grand universal regression equation Y = 13.82 – 0.2866X, where Y is the log of the target copy number and X is the Ct (threshold cycle) of the assay. Except for bark tissue, there was no significant difference in the concentration of CLas cells in other plant parts between the two cultivars. Within the cultivar, the bacterial concentration also varied with the plant part, with peduncle, columella, midrib having significantly higher titer of CLas compared with other plant parts. The obtained results here are in agreement with previous studies conducted on Florida samples, but the consistently lowest bacterial titer recorded in young shoots, leaf blade, and especially leaf margins relative to the midrib has never been previously reported.
Incidence and Severity of Huanglongbing and Candidatus Liberibacter asiaticus Titer among Field-infected Citrus Cultivars
Incidence and severity of Huanglongbing (HLB) disease were assessed in Apr. 2010 among eight citrus cultivars representing diverse scion types growing in commercial groves in Florida's Indian River region, an area with a high incidence of HLB. In each grove, 20 trees of each cultivar were rated for visual HLB symptoms and leaves were collected for quantitative polymerase chain reaction quantification of Candidatus Liberibacter asiaticus (CLas), the presumptive causal agent of HLB. There was a strong correlation between HLB rating and CLas titer (titer represented by Ct, r2 = 0.37 and 0.40, for whole tree and leaf sample, respectively, both with P < 0.0001) across all cultivars and groves. Although incidence and severity of HLB varied considerably among the groves, scion-specific differences were apparent, even when analyses excluded potentially confounding grove effects. ‘Temple’ tangor showed the most consistently low incidence of HLB symptoms and CLas titer; in contrast, ‘Murcott’ tangor and ‘Minneola’ tangelo had the highest incidence of HLB symptoms and highest CLas titer. These results suggest useful resistance to HLB with reduced symptoms and reduced CLas titer may be found in conventional scion cultivars and further work is needed to assess this potential and its commercial value.
Levels of Candidatus Liberibacter asiaticus and Xanthomonas citri in Diverse Citrus Genotypes and Relevance to Potential Transmission from Pollinations
The diseases huanglongbing [HLB, associated with Candidatus Liberibacter asiaticus (CLas)] and Asian citrus canker [ACC, caused by Xanthomonas citri (Xcc)] are widespread in Florida and many other citrus-growing areas, presenting unprecedented challenges for citrus breeding. Because HLB and ACC weaken trees and compromise cropping, breeding is much less efficient using seed parents that have been exposed to these diseases. Therefore, it would be highly desirable to use unique disease-exposed selections only as pollen parents with pollen applied to disease-free trees. However, there may be a risk of introducing these diseases using such pollen sources. To assess this potential, abundance of the pathogens associated with these diseases was assessed in anthers and flowers using quantitative polymerase chain reaction. Because CLas is systemic, levels on mature leaves from the flower source trees were assessed to see if the presence of CLas in flowers was associated with leaf levels. Disease-exposed trees were tested in 10 genotypes from each of three broad genotypic categories, which reflect different levels of susceptibility to the diseases associated with the pathogens studied: Poncirus trifoliata hybrids (most resistant to HLB), Citrus maxima and hybrids (susceptible to both diseases), and C. reticulata and hybrids (considerable resistance to ACC). Of the 30 samples of each tissue type analyzed for CLas, 88% of mature leaves, 69% of flowers, and 88% of anthers had one or more CLas bacterium per sample. The trifoliate genotypic group had significantly lower levels of CLas than the pummelo and mandarin groups in mature leaf samples, but CLas levels were more similar between groups in anther and flower samples, and the pathogen was present in most of the trifoliate hybrids tested. Mean numbers of CLas detected per nanogram nucleic acid were 100 to 800 times higher in mature leaf samples, most characteristic of HLB symptoms, compared with anther samples. Xcc DNA was detected in 30% of flower samples and 23% of anther samples. No significant differences in Xcc levels were found between tissue type or genotypic group. However, regressions between Xcc levels in flowers and percent of plant pedigree derived from mandarin had a negative correlation and an r2 of 0.159 (P = 0.029). The biology of CLas is consistent with the pathogen being present in anthers from unopened flowers, whereas the ACC pathogen detected inside flowers was likely the result of contamination despite great care in sample collection and handling. Where exceptional diligence to exclude HLB and ACC is appropriate, results suggest that there may be a risk of spreading these pathogens through use of pollen from trees on infected farms.
Candidatus Liberibacter asiaticus and Huanglongbing Effects on Citrus Seeds and Seedlings
Huanglongbing (HLB) is a devastating disease of citrus and threatens the citrus industry worldwide. The suspected causal agent of the disease is a phloem-limited bacterium of the genus Candidatus Liberibacter transmitted through insect vector or grafting with diseased budwood. Currently, most seed source trees for citrus rootstock propagation are located outdoors and unprotected from disease transmission. In addition, fruit from HLB-affected scion varieties in Florida containing seeds enter the commercial trade and move into other citrus-growing areas. The objective of this study was to determine how Ca. L. asiaticus infection affects seed quality and seedling development and whether the disease appears in seedlings grown from infected fruit. Two experiments were conducted involving thousands of seedlings produced from seeds from infected rootstock seed source trees and ‘Valencia’ sweet orange trees, respectively. Infection of trees and fruit with Ca. L. asiaticus significantly reduced seed weight, seed germination, and seedling height. Seedlings did not develop symptoms typical of HLB throughout the experiment. Polymerase chain reaction (PCR) analysis initially identified two of 686 rootstock seedlings and three of 431 sweet orange seedlings positive for the pathogen when they were very young. Resampling and PCR analysis of these five seedlings at older ages consistently indicated they were negative for the pathogen and none of these plants ever developed symptoms of HLB. It is suggested that Ca. L. asiaticus may have been translocated into some part of the embryo during seed development but that it was not present in cells or tissue, which permitted replication or disease development as the seedling grew.
Search