SeqCode Registry
cognitis nomina
  • About
  • Search
  • •
  • Login
  • Register
Journals Microorganisms

JSON
See as cards

Microorganisms


Publications
33

  • ←
  • 1
  • 2
  • 3
  • 4
  • →
CitationNamesAbstract
Gene Expression Profile of Mexican Lime (Citrus aurantifolia) Trees in Response to Huanglongbing Disease caused by Candidatus Liberibacter asiaticus Arce-Leal et al. (2020). Microorganisms 8 (4) Ca. Liberibacter asiaticus
Text
Complete Genome of a Member of a New Bacterial Lineage in the Microgenomates Group Reveals an Unusual Nucleotide Composition Disparity Between Two Strands of DNA and Limited Metabolic Potential Kadnikov et al. (2020). Microorganisms 8 (3) “Chazhemtonibacteriaceae” “Beckwithiibacteriota” Ca. Chazhemtobacterium aquaticus Ca. Collierbacteria
Text
Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows Opdahl et al. (2018). Microorganisms 6 (1)
Text
  • ←
  • 1
  • 2
  • 3
  • 4
  • →

Gene Expression Profile of Mexican Lime (Citrus aurantifolia) Trees in Response to Huanglongbing Disease caused by Candidatus Liberibacter asiaticus
Nowadays, Huanglongbing (HLB) disease, associated with Candidatus Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host–pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited. In this work, we have obtained an RNA-seq-based differential expression profile of Mexican lime plants challenged against CLas infection, at both asymptomatic and symptomatic stages. Typical HLB-responsive differentially expressed genes (DEGs) are involved in photosynthesis, secondary metabolism, and phytohormone homeostasis. Enrichment of DEGs associated with biotic response showed that genes related to cell wall, secondary metabolism, transcription factors, signaling, and redox reactions could play a role in the tolerance of Mexican lime against CLas infection. Interestingly, despite some concordance observed between transcriptional responses of different tolerant citrus species, a subset of DEGs appeared to be species-specific. Our data highlights the importance of studying the host response during HLB disease using as model tolerant citrus species, in order to design new and opportune diagnostic and management methods.
Complete Genome of a Member of a New Bacterial Lineage in the Microgenomates Group Reveals an Unusual Nucleotide Composition Disparity Between Two Strands of DNA and Limited Metabolic Potential
The candidate phyla radiation is a large monophyletic lineage comprising unculturable bacterial taxa with small cell and genome sizes, mostly known from genomes obtained from environmental sources without cultivation. Here, we present the closed complete genome of a member of the superphylum Microgenomates obtained from the metagenome of a deep subsurface thermal aquifer. Phylogenetic analysis indicates that the new bacterium, designated Ch65, represents a novel phylum-level lineage within the Microgenomates group, sibling to the candidate phylum Collierbacteria. The Ch65 genome has a highly unusual nucleotide composition with one strand of highly enriched in cytosine versus guanine throughout the whole length. Such nucleotide composition asymmetry, also detected in the members of Ca. Collierbacteria and Ca. Beckwithbacteria, suggests that most of the Ch65 chromosome is replicated in one direction. A genome analysis predicted that the Ch65 bacterium has fermentative metabolism and could produce acetate and lactate. It lacks respiratory capacity, as well as complete pathways for the biosynthesis of lipids, amino acids, and nucleotides. The Embden–Meyerhof glycolytic pathway and nonoxidative pentose phosphate pathway are mostly complete, although glucokinase, 6-phosphofructokinase, and transaldolase were not found. The Ch65 bacterium lacks secreted glycoside hydrolases and conventional transporters for importing sugars and amino acids. Overall, the metabolic predictions imply that Ch65 adopts the lifestyle of a symbiont/parasite, or a scavenger, obtaining resources from the lysed microbial biomass. We propose the provisional taxonomic assignment ‘Candidatus Chazhemtobacterium aquaticus’, genus ‘Chazhemtobacterium‘, family ‘Chazhemtobacteraceae‘ in the Microgenomates group.
Identification of Uncultured Bacterial Species from Firmicutes, Bacteroidetes and CANDIDATUS Saccharibacteria as Candidate Cellulose Utilizers from the Rumen of Beef Cows
The ability of ruminants to utilize cellulosic biomass is a result of the metabolic activities of symbiotic microbial communities that reside in the rumen. To gain further insight into this complex microbial ecosystem, a selection-based batch culturing approach was used to identify candidate cellulose-utilizing bacterial consortia. Prior to culturing with cellulose, rumen contents sampled from three beef cows maintained on a forage diet shared 252 Operational Taxonomic Units (OTUs), accounting for 41.6–50.0% of bacterial 16S rRNA gene sequences in their respective samples. Despite this high level of overlap, only one OTU was enriched in cellulose-supplemented cultures from all rumen samples. Otherwise, each set of replicate cellulose supplemented cultures originating from a sampled rumen environment was found to have a distinct bacterial composition. Two of the seven most enriched OTUs were closely matched to well-established rumen cellulose utilizers (Ruminococcus flavefaciens and Fibrobacter succinogenes), while the others did not show high nucleotide sequence identity to currently defined bacterial species. The latter were affiliated to Prevotella (1 OTU), Ruminococcaceae (3 OTUs), and the candidate phylum Saccharibacteria (1 OTU), respectively. While further investigations will be necessary to elucidate the metabolic function(s) of each enriched OTU, these results together further support cellulose utilization as a ruminal metabolic trait shared across vast phylogenetic distances, and that the rumen is an environment conducive to the selection of a broad range of microbial adaptations for the digestion of plant structural polysaccharides.
Search