The ISME Journal


Publications
79

A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea (Ca. Poseidoniales ord. nov.)

Citation
Rinke et al. (2019). The ISME Journal 13 (3)
Names
Poseidoniia Thalassarchaeum betae Ts Thalassarchaeum Poseidoniaceae Poseidonia Poseidonia alphae Ts Thalassarchaeaceae Poseidoniales Ca. Poseidonaceae “Nanohalarchaeota” “Poseidoniota”
Abstract
Abstract Marine Group II (MGII) archaea represent the most abundant planktonic archaeal group in ocean surface waters, but our understanding of the group has been limited by a lack of cultured representatives and few sequenced genomes. Here, we conducted a comparative phylogenomic analysis of 270 recently available MGII metagenome-assembled genomes (MAGs) to investigate their evolution and ecology. Based on a rank-normalised genome phylogeny, we propose that MGII is an order-level

A methanotrophic archaeon couples anaerobic oxidation of methane to Fe(III) reduction

Citation
Cai et al. (2018). The ISME Journal 12 (8)
Names
Ca. Methanoperedenaceae “Methanoperedens ferrireducens”
Abstract
Abstract Microbially mediated anaerobic oxidation of methane (AOM) is a key process in the regulation of methane emissions to the atmosphere. Iron can serve as an electron acceptor for AOM, and it has been suggested that Fe(III)-dependent AOM potentially comprises a major global methane sink. Although it has been proposed that anaerobic methanotrophic (ANME) archaea can facilitate this process, their active metabolic pathways have not been confirmed. Here we report the enrichment

Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system

Citation
Sauder et al. (2017). The ISME Journal 11 (5)
Names
Ca. Nitrosocosmicus exaquare
Abstract
AbstractThaumarchaeota have been detected in several industrial and municipal wastewater treatment plants (WWTPs), despite the fact that ammonia-oxidizing archaea (AOA) are thought to be adapted to low ammonia environments. However, the activity, physiology and metabolism of WWTP-associated AOA remain poorly understood. We report the cultivation and complete genome sequence of Candidatus Nitrosocosmicus exaquare, a novel AOA representative from a municipal WWTP in Guelph, Ontario (Canada). In en