Progress and Obstacles in Culturing ‘Candidatus Liberibacter asiaticus’, the Bacterium Associated with Huanglongbing


Citation
Merfa e Silva et al. (2019). Phytopathology® 109 (7)
Names (1)
Subjects
Agronomy and Crop Science Plant Science
Abstract
In recent decades, ‘Candidatus Liberibacter spp.’ have emerged as a versatile group of psyllid-vectored plant pathogens and endophytes capable of infecting a wide range of economically important plant hosts. The most notable example is ‘Candidatus Liberibacter asiaticus’ (CLas) associated with Huanglongbing (HLB) in several major citrus-producing areas of the world. CLas is a phloem-limited α-proteobacterium that is primarily vectored and transmitted among citrus species by the Asian citrus psyllid (ACP) Diaphorina citri. HLB was first detected in North America in Florida (USA) in 2005, following introduction of the ACP to the State in 1998. HLB rapidly spread to all citrus growing regions of Florida within three years, with severe economic consequences to growers and considerable expense to taxpayers of the state and nation. Inability to establish CLas in culture (except transiently) remains a significant scientific challenge toward effective HLB management. Lack of axenic cultures has restricted functional genomic analyses, transfer of CLas to either insect or plant hosts for fulfillment of Koch’s postulates, characterization of host-pathogen interactions and effective screening of antibacterial compounds. In the last decade, substantial progress has been made toward CLas culturing: (i) three reports of transient CLas cultures were published, (ii) a new species of Liberibacter was identified and axenically cultured from diseased mountain papaya (Liberibacter crescens strain BT-1), (iii) psyllid hemolymph and citrus phloem sap were biochemically characterized, (iv) CLas phages were identified and lytic genes possibly affecting CLas growth were described, and (v) genomic sequences of 15 CLas strains were made available. In addition, development of L. crescens as a surrogate host for functional analyses of CLas genes, has provided valuable insights into CLas pathogenesis and its physiological dependence on the host cell. In this review we summarize the conclusions from these important studies.
Authors
Publication date
2019-07-01
DOI
10.1094/phyto-02-19-0051-rvw

© 2022-2024 The SeqCode Initiative
  All information contributed to the SeqCode Registry is released under the terms of the Creative Commons Attribution (CC BY) 4.0 license